SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - PG)
(Regular/Supplementary/Improvement)
CC19P MTH2 C06 - ALGEBRA- II
(Mathematics)
(2019 Admission onwards)
Time : 3 HoursMaximum : 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Prove that FF is a field, every proper non trivial prime ideal of $\mathrm{F}[\mathrm{x}] \mathrm{F}[\mathrm{x}]$ is maximal.
2. Prove that $R(i) \cong C R(i) \cong C$
3. Show that regular 30-gon is constructible.
4. Prove that if EE is a field of characteristic pp then EE contains exactly pnpn elements for some positive integer nn .
5. Prove that any two algebraic closures of a field FF are isomorphic.
6. Prove that CC is a splitting field over RR.
7. Give an example of a perfect field.
8. Prove that the polynomial $\mathrm{Xn}-\mathrm{axn}-\mathrm{a}$ is solvable by radicals over QQ .

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

9. A finite extension field EE of a field FF is an algebraic extension of FF. What about the converse?
10. Find a basis and dimension of for $Q(3-\sqrt{ }, 7-\sqrt{ }) Q(3,7)$ over $Q Q$.
11. Let EE be an extension field of FF , then prove that $\mathrm{F}-\mathrm{E}=\{\alpha \in \mathrm{E}: \alpha$ is algebraic over $F\} F^{-} \mathrm{E}=\{\alpha \in \mathrm{E}: \alpha$ is algebraic over F$\}$ is a subfield of EE .

UNIT - II
12. If FF is a field of prime characteristic pp with algebraic closure $\mathrm{F}^{--\mathrm{F}^{-}}$, then $\mathrm{Xp}_{\mathrm{n}}-\mathrm{xxpn}^{-\mathrm{x}}$ has pnpn distinct zeros in $\mathrm{F}^{-\cdots \mathrm{F}^{-}}$.
13. Find the splitting field of $\mathrm{x} 3-2 \times 3-2$ over QQ .
14. If EE is a finite extension of FF , then show that EE is separable over FF if and only if each $\alpha \alpha$ in EE i separable over FF.

UNIT - III

15. Let KK be a finite normal extension of FF , and let EE be an extension of FF , where $\mathrm{F} \leq \mathrm{E} \leq \mathrm{K} \leq \mathrm{F}-\mathrm{F} . \mathrm{F} \leq \mathrm{E} \leq \mathrm{K} \leq \mathrm{F}^{-}$. Then show that
16. KK is a finite normal extension of EE
17. $G(K / E) G(K / E)$ is precisely the subgroup of $G(K / F) G(K / F)$ consisting of all those automorphisms that leave EE fixed.
18. If KKsplitting field of $\mathrm{x} 4+1 \mathrm{x} 4+1$ over QQ , prove that $\mathrm{G}(\mathrm{K} / \mathrm{Q}) \mathrm{G}(\mathrm{K} / \mathrm{Q})$ is isomorphic to Klein 4-group.
19. Find $\Phi_{8}(\mathrm{x}) \Phi 8(\mathrm{x})$ over $\mathrm{Z} 2 . \mathrm{Z} 2$.

Part C

Answer any two questions. Each question carries 5 weightage.
18. Let $R R$ be a commutative ring with unity and $M M$. is an ideal in $R R$. Then prove that $M M$ is a maximal ideal of $R R$ if and only if $R / M R / M$ is a field.
19. State and Prove Kroneckers Theorem.
20. State and Prove Isomorphism extension theorem.
21. Prove that the Galois group of pth cyclotomic extension of QQ for a prime pp is cyclic of order $\mathrm{p}-1 . \mathrm{p}-1$.
$(2 \times 5=10$ Weightag

