SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022
 (CBCSS - PG)
 (Regular/Supplementary/Improvement)
 CC19P PHY2 C06 - MATHEMATICAL PHYSICS - II
 (Physics)
 (2019 Admission onwards)

Time : 3 HoursMaximum : 30 Weightage

Section A

Answer all questions. Each question carries 1 weightage.

1. Locate and name all the singularities of $f(z)=z 8+z 4+2(z-1) 3(3 z+2) 2 f(z)=z 8+z 4+2(z-1) 3(3 z+2) 2$
2. Find the residue of the function $f(z)=z(z-1)(z+1) 2 f(z)=z(z-1)(z+1) 2$ at $z=-1$.
3. State and prove Lagrange theorem of subgroups.
4. What is meant by reducible representation?
5. What are the features of an $\mathrm{SO}(2)$ group?
6. Give one application of Euler equation.
7. Write a short note on seperable Kernel method in solving integral equation.
8. Contrast the interpretation of Green's function in Sturm-Liouville eigenvalue equation with ordinary inhomogenous Sturm-Liouville equation.
$(8 \times 1=8$ Weightage

Section B

Answer any two questions. Each question carries 5 weightage.
9. State and prove Cauchy's integral theorem. Illustrate with a suitable example.
10. Explain the homomorphism of groups. Establish the homomorphism between $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ groups.
11. Derive Euler's equation by applying variational principle. How can it be generalized for the case of several dependent and several independent variables?
12. Solve the Fredholm integral $\mathrm{e}-\mathrm{x}_{2}=\int_{\infty-\infty} \mathrm{e}-(\mathrm{x}-\mathrm{t})_{2} \varphi(\mathrm{t})$ dte $-\mathrm{x} 2=\int-\infty \infty \mathrm{e}-(\mathrm{x}-\mathrm{t}) 2 \varphi(\mathrm{t}) \mathrm{dt}$ using the Fourier convolution technique.
$(2 \times 5=10$ Weightage $)$

Section C

Answer any four questions. Each question carries 3 weightage.
13. Find the analytic function for the following cases.
(a) $u(x, y)=x 3-3 x y 2 u(x, y)=x 3-3 x y 2$
(b) $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{e}-\mathrm{y} \sin \mathrm{xv}(\mathrm{x}, \mathrm{y})=\mathrm{e}-\mathrm{y} \sin \mathrm{f}_{0} \mathrm{f} \mathrm{x}$.
14. Obtain the Laurent expansion of $\operatorname{ze}_{z}(z-1) z e z(z-1)$ about $z=1$
15. Starting from an element subject to the only condition $A^{n}=E$, the identity element, such that n is the smallest integer satisfying the condition, generate the group.
16. Obtain an equation for a particle sliding on a cylindrical surface.
17. Derive the volterra integral equation corresponding to $y^{\prime \prime}(x)-y(x)=0, y(0)=0, y(0)=1$.
18. Show that Greeen's function is symmetric using Eigenfunction expansion method.
19. Find the Green's function for operator $L=d_{2} d_{2} L=d 2 d x 2$ with boundary conditions $y(0)=0$ and $y^{\prime}(1)=0$.

