(Pages: 2)

Name:	• • • • • • • • • • •
Reg. No	

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P MST4 C14 - MULTIVARIATE ANALYSIS

(Statistics - Core Course)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Derive the characteristic function of a non-singular multivariate normal distribution.
- If X~N_p(μ, ∑) and if ∑ = Δ, a diagonal matrix then show that the components of X are independently Normally distributed and conversely.
- 3. Distinguish between partial and multiple correlation.
- 4. Outline test of symmetry.
- 5. Obtain the relation between Mahalanobis D^2 and discriminant function.
- 6. Compare principal component analysis with factor analysis.
- 7. Explain Fisher linear discriminant function in the problem of classification.

 $(4 \times 2 = 8 \text{ Weightage})$

PART B

Answer any *four* questions. Each question carries 3 weightage.

- 8. Derive the characteristic of the Wishart distribution and hence show that it is a matrix variate generalization of the χ^2 distribution.
- 9. Derive the null distribution of the multiple correlation coefficient.
- 10. State and prove Cochran's theorem on quadratic forms.
- 11. If $X \sim N_p(0, I)$, then show that a quadratic form X'AX and the linear form B'X are independent if and only if AB = 0.
- 12. Show that \overline{X} and A is independently distributed when sampling from a multivariate normal population.
- 13. Define canonical correlation. Obtain it as the roots of certain detrimental equation associated with covariance matrix.
- 14. Explain how do you classify an observation to one of two multivariate normal populations when the parameters are known.

$(4 \times 3 = 12 \text{ Weightage})$

20P439

PART C

Answer any *two* questions. Each question carries 5 weightage.

- 15. Show that $X \sim N_p(\mu, \sum)$ if and only if $X = \mu + BG$ where $BB' = \sum$ and the rank of *B* is m where $G \sim N_m(0, I)$.
- 16. What is generalized variance? Derive its distribution.
- 17. Describe Fisher- Behrens problem in the multivariate context and describe how the problem can be tackled.
- 18. What are principal components? Obtain the relation between principal components and eigen structure of the variance covariance matrix of multivariate normal vector.

 $(2 \times 5 = 10 \text{ Weightage})$
