(Pages : 2)

Name :
Reg. No :

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022 (CBCSS-PG) CC19P MTH4 C15 - ADVANCED FUNCTIONAL ANALYSIS

(Mathematics-CoreCourse)

(2019 Admission onwards)

Time: 3 Hours

Maximum: 30 Weightage

Part-A

Answer*all* questions. Each question carries 1 weightige.

- 1. State true or false and justify. " The eigen vectors corresponding to distinct eigenvalues of a bounded operator are linearly independent."
- 2. Let X be a Banach space and $A \in L(X)$ be invertible. Then prove that $\sigma(A^{-1}) = \{\frac{1}{\lambda} : \lambda \in \sigma(A)\}$, where $\sigma(A)$ is the spectrum of the operator A.
- 3. Let *H* be a Hilbert space and *A* be a bounded operator on *H* such that $\langle A(x), x \rangle \in \mathbb{R}$ for every $x \in H$. Prove that *A* is a symmetric operator.
- 4. If $A \ge 0$, then prove that $P(A) \ge 0$, for every polynomial $P(\lambda)$ with non-negative coefficients.
- 5. Let P be an orthoprojection on a Hilbert space H. Then prove that $0 \le P \le I$, where I is the identity operator on H.
- 6. State true or false and justify. "A linear map is a continuous map if and only if it is a closed map ".
- 7. State Banach-Steinhaus theorem.
- 8. Define Banach algebra and give an example.

$(8 \times 1 = 8 \text{ Weightage})$

Part-B

Answer any two questions from each unit. Each question carries 2 weightage.

Unit I

- 9. Let T be a compact operator on a Banach space X. If $\lambda \neq 0$ and $\Delta_{\lambda} = X$, then prove that $\ker(T_{\lambda}) = 0$, where $\Delta_{\lambda} = \operatorname{Im}(T \lambda I)$ and $T_{\lambda} = T \lambda I$.
- 10. Consider the operator $T : l_2 \to l_2$ defined by $T(\mathbf{x}) = (0, x_1, x_2, ...), \mathbf{x} = (x_1, x_2, ...) \in l_2$. Find the spectrum of T.

20P402

11. Let *H* be a Hilbert space and *A* be a symmetric operator on *H*. Prove that $||A|| = \sup_{x \neq 0} \frac{|\langle A(x), x \rangle|}{||x||^2}$.

Unit II

- 12. Let *H* be a Hilbert space and $\{A, A_0, A_1, A_2, ...\}$ be a collection of bounded operators on *H*. If $A_0 \leq A_1 \leq A_2 \leq ... \leq A_n \leq ... \leq A$, then prove that there exists a bounded operator *B* such that $A_n(x) \to B(x)$ for all $x \in H$.
- 13. Let H be a Hilbert space and A be a bounded operator on H such that $mI \leq A \leq MI$. Let $\phi, \psi \in \mathcal{K}[m, M]$ such that $\psi(t) \leq \phi(t)$ for all $t \in [m, M]$. If $\{Q_n\}$ and $\{P_n\}$ be sequences of polynomials such that $Q_n(t) \searrow \psi(t)$ and $P_n(t) \searrow \phi(t)$ for all $t \in [m, M]$, then prove that $\lim_{n \to \infty} Q_n(A) \leq \lim_{n \to \infty} P_n(A)$. Here $\mathcal{K}[m, M]$ is the set of all piecewise continuous bounded functions which are monotone decreasing limits of continuous functions.
- 14. Let H be a Hilbert space and a, b, m, M be real numbers such that $a < m \le M < b$. If A is a bounded operator on H such that $mI \le A \le MI$, then construct the spectral integral of A.

Unit III

- 15. State and prove the Banach open mapping theorem.
- 16. Let X and Y be Banach spaces and $A: X \to Y$ be a closed graph operator. If Dom(A) = X, then prove that A is a bounded operator.
- 17. Let X be a Banach space, K be a closed convex set in X and $x_0 \notin K$. Prove that there is a $f \in X^*$ such that $f(x_0) > \sup_{x \in K} f(x)$.

$(6 \times 2 = 12 \text{ Weightage})$

Part-C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Let T be a compact operator on a Banach space X. If $\lambda \neq 0$, then prove that $\Delta_{\lambda} = \text{Im}(T \lambda I)$ is a closed subspace of X.
- 19. State and prove the first Hilbert-Schmidt theorem.
- 20. Let *H* be a Hilbert space and *A* be a bounded operator on *H* such that $A \ge 0$. Prove that there exists a unique operator $B \ge 0$ on *H* such that $B^2 = A$.
- 21. Let \mathcal{A} be a Banach algebra. Prove that there exists an equivalent norm $|\cdot|$ on \mathcal{A} such that $|x \cdot y| \leq |x| \cdot |y|$, for all $x, y \in \mathcal{A}$.

 $(2 \times 5 = 10 \text{ Weightage})$