\qquad
\qquad

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2022
 (CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U BCA1 C02 - DISCRETE MATHEMATICS
(Computer Application - Complementary Course)
(2019 Admission onwards)

Time : 2.00 Hours

Maximum : 60 Marks
Credit: 3

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Define conjunction.
2. What you mean by a proper subset of a set ?
3. Draw the logic gate circuit for the Boolean expression $(A+B) \cdot(A+C)$.
4. What is undirected graph and give an example.
5. Define union of two graphs.
6. Draw a 3 -regular graph and 4 -regular graph.
7. Prove or disprove: The chromatic number of a wheel graph with 5 vertices is 3 .
8. Define pendant vertex in a tree and draw a tree with three pendant vertices.
9. Define binary tree and path length of a tree.
10. Define rank and nullity of a graph.
11. Define nonplanar graph and give an example.
12. Define subgraph generated by a vertex set.
(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)
 Answer all questions. Each question carries 5 marks.

13. Determine whether.
a) $[(p \vee q) \wedge(\sim q)] \rightarrow p$ is a tautology.
b) $p \leftrightarrow \sim p$ is a contradiction.
14. Check whether the relation R on the set \mathbb{Z} of integers, given by $R=\{\langle x, y\rangle: y$ is divisible by $x\}$ is an equivalence relation on \mathbb{Z}.
15. Using truth tables, prove the De-Morgans laws in a boolean algebra.
16. Explain path, simple path and elementary path with suitable examples.
17. Frame a Travelling-Salesman problem and solve it.
18. Explain the following:
a) Cut-set.
b) Cut-vrttex.
c) Edge connectivity
d) Vertex connectivity.
e) Separable graph.
19. Explain the following:
a) Adjacency matrix of a graph.
b) Boolean matrix.
c) Strongly connected graph.
d) Path matrix of a graph.
(Ceiling: 30 Marks)
Part C (Essay questions)
Answer any one question. The question carries 10 marks.
20. a) Verify that $p \rightarrow q \equiv \sim p \vee q$.
b) Verify that $\sim(p \rightarrow q) \equiv p \wedge \sim q$.
c) Verify that $\sim(\sim p \vee q) \equiv p \wedge \sim q$
d) Show that $p \rightarrow q \equiv \sim q \rightarrow \sim p$
21. (i) Let $A=\{1,2,3\}, \$ \mathrm{X} \$$ denotes the power set of A. Then draw the Hasse diagram for the inclusion relation on X defined by $\subseteq=\left\{<A^{\prime}, A^{\prime \prime}>: A^{\prime} \subseteq A^{\prime \prime}, A^{\prime} \in X, A^{\prime \prime} \in X\right\}$.
(ii) Find the least member and greatest member, if any, in this poset.
(iii) Find the minimal members and maximal members, if any, in this poset.
