22U109

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER B.Sc DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS1 C01 / CC20U MTS1 C01 - MATHEMATICS - 1

(Mathematics - Complementary Course)

(2019 Admission onwards)

Time : 2.00 Hours

Maximum : 60 Marks

Credit: 3

Part A (Short answer questions) Answer *all* questions. Each question carries 2 marks.

- 1. Find $\lim_{x\to\infty} \frac{2x+1}{3x+1}$
- 2. Find the slope of the tangent line to the graph of $y = x^4 x^2 + 3x$ at x = 1.
- 3. Let $f(x) = 4x^5 13x$ and $g(x) = x^3 + 2x 1$. Find derivative of $\frac{g(x)}{f(x)}$

4. Verify chain rule for
$$f(u) = u^2$$
 and $g(x) = \sqrt{x}$.

- 5. If $x^3 + y^3 = xy$, compute $\frac{dx}{dy}$ in terms of x and y.
- 6. Find the general antiderivative of the function $f(x) = \frac{x+1}{x^3}$
- 7. Show that there is a number x_0 such that $x_0^5 x_0 = 3$
- 8. Define critical point of a function.
- 9. Write the concavity of $f(x) = 4x^3$ at the points x = 1 and x = 0
- 10. State Mean Value Theorem
- 11. An object moving in a straight line has velocity $v = 6t^4 + 3t^2$ at time t. How far does the object travel between t = 1 and t = 10?

12. Verify the formula
$$\frac{d}{dx} \int_a^x f(s) ds = f(x)$$
 for $f(x) = x$.

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer *all* questions. Each question carries 5 marks.

13. Use the formal definition to find the derivative of $f(x) = \frac{1}{x^2}$ for $x \neq 0$.

- 14. Find the equation of the line tangent to the graph of $y = \sqrt{x} + \frac{1}{2(x+1)}$ at x = 1.
- 15. Find the equation of the line tangent to the parametric curve $x = \sqrt{t^4 + 6t^2 + 8t}$, $y = \frac{t^2 + 1}{\sqrt{t} 1}$ at t = 3.
- 16. Find the critical points, endpoints, maximum and minimum points and values of the function $y = x^4 x^2$ on the intreval $[-1, \infty)$
- 17. Evaluate $\lim_{x \to \infty} \left(\frac{x^4 + \ln x}{3x^4 + 2x^2 + 1} \right)$
- 18. (a) Check the integral $\int x(1+x)^6 dt = \frac{1}{56}(7x-1)(1+x)^7 + C$ (b) Evaluate $\int_0^2 x(1+x)^6 dt$.
- 19. A parabolic arch with base 10 meters and height 12 meters is erected. How much area does it enclose?

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.

- 20. (a) A Reservoir contains $10^8 10^4t 80t^2 10t^3 + 5t^5$ liters of water at time t, where t is the time in hours from when the gates are opened. How many liters per hour are leaving the reservoir after one hour?
 - (b) Find the velocity and acceleration of a moving particle at t = 2 if the position is given by $y = 18t^2 - 2t + 5$.
- 21. The region under the graph of x^2 on $0 \le x \le 1$ is revolved about the x axis. Using disk method find its volume.

(1 × 10 = 10 Marks)
