(Pages: 2)

Name: Reg. No:

FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (CBCSS-UG)

CC20U MTS5 B05 - ABSTRACT ALGEBRA

(Mathematics – Core Course)

(2020 Admission - Regular)

Time: 2.5 Hours

Maximum: 80 Marks Credit: 4

Section-A

Answer *all* questions. Each question carries 2 marks.

- 1. Write Addition and Multiplication table for \mathbb{Z}_5 .
- 2. Prove that $[a]_n = [b]_n$ if and only if $a \equiv b \pmod{n}$.
- 3. Find all idempotent elements of \mathbb{Z}_6 .
- 4. Find all units in \mathbb{Z}_{15} .
- 5. Find all subgroups of S_3 .
- 6. Define Klein four group.
- 7. Find order of every element in \mathbb{Z}_6
- 8. Find the maximum possible order of an element in S_{10}
- 9. Define Factor Group with example.
- 10. State Cayley's Theorem.
- 11. Define Kernel of a Group Homomorphism.
- 12. Define Dihedral Group. Write an example.
- 13. Define Integral Domain. Write an example.
- 14. Define center of a Group.
- 15. Define Automorphism of a Group.

(Ceiling: 25 Marks)

Section -B

Answer *all* questions. Each question carries 5 marks.

- 16. State and Prove Euler theorem.
- 17. Let p be a prime number then show that for any integer a, $a^p \equiv a \pmod{p}$
- 18. Show that the set $GL_n(\mathbb{R})$ forms a group under matrix multiplication.
- 19. Prove that every group of prime order is cyclic.
- 20. State and Prove Lagrange's Theorem.
- 21. Write subgroup diagram of \mathbb{Z}_{18}
- 22. Prove that set of all even permutations of S_n is a subgroup of S_n .

20U501

- 23. Show that $Auto(\mathbb{Z}) \cong \mathbb{Z}_2$
- 24. Give addition and multiplication tables for $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

(Ceiling: 35 Marks)

PART-C (Essay Type)

Answer any *two* questions. Each question carries 10 marks.

- 25. Show that Every permutation in S_n can be written as a product of disjoint cycles
- 26. Let G be a group and let H be a subgroup of G. Then show that H is a subgroup of G if and only if H is nonempty and $ab^{-1} \in G$ for all $a, b \in G$
- 27. Show that every subgroup of a cyclic group is cyclic.
- 28. Show that every finite Integral Domain is a Field.

 $(2 \times 10 = 20 \text{ Marks})$
