20U504

(Pages:

FIFTH SEMESTER B.Sc. DEGREE EX (CBCSS-U

CC20U MTS5 B08 - LINEA

(Mathematics - Co (2020 Admission

Time: 2 Hours

Part A

Answer *all* questions. Each question carries 2 marks.

- 1. Define polyhedral convex set. Give one example.
- 2. Any unbounded linear programming problem has an unbounded constraint set. True or False? Justify.
- 3. Draw and shade a convex subset that has infinite extreme point in plane.
- 4. What is the condition for optimality in the simplex algorithm?
- 5. What is relevance of anticycling rule in a simplex algorithm?
- 6. Distinguish between canonical and non-canonical linear programming problem.
- 7. Write down minimization problem from the dual table

- 8. Define the terms pure strategy and mixed strategy.
- 9. Write down the general balanced transportation problem.
- 10. Define basic feasible solution of a transportation problem.
- 12. Solve the assignment problem.

8	7
7	7
8	5
L	

3)	Name:
	Reg. No:
AMINATION,	NOVEMBER 2022
UG)	
R PROGRAM	MING
fore Course)	
n - Regular)	
	Maximum: 60 Marks

Credit: 3

$$\begin{array}{c} 1 \\ \hline 1 \\ \hline 1 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} = -t_1 \\ = f \\ = \sigma \end{array}$$

11. Method for solving transportation problem is not used for solving assignment problem. Why?

10 8 7

(Ceiling: 20 Marks)

Turn Over

Part B

Answer *all* questions. Each question carries 5 marks.

13. Solve the linear programming problem using geometric method.

Maximize f(x, y, z) = 2x + y - 2zsubject to $x + y + z \leq 1$ $y + 4z \leq 2$ $x, y, z \ge 0.$

14. Solve using simplex algorithm.

Minimize g(x, y) = y - 5xsubject to $x - y \ge 1$ $y \leq 8$ $x, y \ge 0$

15. Solve.

\mathbf{x}	У	-1	
1	2	10	$= -t_{1}$
-3	-1	-15	$= -t_2$
1	3	0	= f

16. State and prove duality theorem.

17. Reduce the payoff matrix using domination method.

			II		
	1	-3	1	0	1
	-3	-2	-1	0	1
I	1	-1	1	1	-1
	-2	-1	0	1	2
	$\begin{bmatrix} 1\\ -3\\ 1\\ -2\\ 1 \end{bmatrix}$	-1	-1	-1	1_

18. Find initial basic feasible solution using north west corner method.

5	9	10	6	4
10	7	5	4	5
4	5	5	4	2
6	5	7	5	3
3	4	4	3	

19. Write down the Hungarian algorithm for finding optimal solution for an assignment problem.

(Ceiling: 30 Marks)

Part C

20. Find optimal solution for the minimization and minimization problem in the dual table.

21. Find IBFS using VAM method. Hence find the optimum solution for the transportation problem.

6	5	4
3	7	2
5	10	8
4	6	3
10	7	6

20U504

Answer any one question. The question carries 10 marks.

$$\begin{array}{c} -1 \\ 1 \\ -1 \\ -1 \\ -1 \\ = -t_1 \\ = -t_2 \\ 0 \\ = f \\ = g \end{array}$$

10
16
10
12

$(1 \times 10 = 10 \text{ Marks})$