20U504

(Pages: 3)
Name:
Reg. No:
FIFTH SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (CBCSS-UG)

CC20U MTS5 B08-LINEAR PROGRAMMING

(Mathematics - Core Course)
(2020 Admission - Regular)

Part A

Answer all questions. Each question carries 2 marks

1. Define polyhedral convex set. Give one example
2. Any unbounded linear programming problem has an unbounded constraint set. True or False? Justify.
3. Draw and shade a convex subset that has infinite extreme point in plane.
4. What is the condition for optimality in the simplex algorithm?
5. What is relevance of anticycling rule in a simplex algorithm?
6. Distinguish between canonical and non-canonical linear programming problem
7. Write down minimization problem from the dual table

($\mathrm{x}_{1} \mathrm{x}_{2}$			
(y1)	2		-1
y_{2}		1	-1
-1	2	1	0

8. Define the terms pure strategy and mixed strategy.
9. Write down the general balanced transportation problem.
10. Define basic feasible solution of a transportation problem.
11. Method for solving transportation problem is not used for solving assignment problem. Why?
12. Solve the assignment problem.

8	7	10
7	7	8
8	5	7

(Ceiling: 20 Marks)

Part B

Answer all questions. Each question carries 5 marks.

13. Solve the linear programming problem using geometric method.

$$
\begin{array}{ll}
\text { Maximize } & f(x, y, z)=2 x+y-2 z \\
\text { subject to } & x+y+z \leqq 1 \\
& y+4 z \leqq 2 \\
& x, y, z \leqq 0 .
\end{array}
$$

14. Solve using simplex algorithm.

$$
\begin{array}{cl}
\text { Minimize } & g(x, y)=y-5 x \\
\text { subject to } & x-y \geqq 1 \\
& y \leqq 8 \\
& x, y \geqq 0
\end{array}
$$

15. Solve.

(x) (y)	-1
12	10
$\begin{array}{ll}-3 & -1\end{array}$	-15
13	0

16. State and prove duality theorem.
17. Reduce the payoff matrix using domination method.

$$
\text { I }\left[\right]
$$

18. Find initial basic feasible solution using north west corner method.

$$
\begin{array}{|rrrr|r}
\begin{array}{|rrrr}
5 & 9 & 10 & 6 \\
10 & 7 & 5 & 4 \\
4 & 5 & 5 & 4 \\
5 & 5 & 7 & 5 \\
2 & 3 \\
3 & 4 & 4 & 3
\end{array}
\end{array}
$$

19. Write down the Hungarian algorithm for finding optimal solution for an assignment problem.

85

Part C

Answer any one question. The question carries 10 marks

20. Find optimal solution for the minimization and minimization problem in the dual table.

(\times_{1} ($x_{2} \mathrm{x}_{3} \mathrm{x}^{1}-1$		
(y1)	$\begin{array}{lll}1 & -1 & 2\end{array}$	1
y_{2}	200	-1
y_{3}	$\begin{array}{llll}0 & 1 & -1\end{array}$	-1
-1	1 3	0
$=0=0=s_{1} \quad=\mathrm{g}$		

21. Find IBFS using VAM method. Hence find the optimum solution for the transportation problem.

6 5 4 3 7 2	10		
5	10	8	10
4	6	3	12
	10	7	6
