\qquad
\qquad
FIFTH SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2022 (CBCSS-UG)
CC20U MTS5 D03 - LINEAR MATHEMATICAL MODELS
(Mathematics - Open Course)
(2019 Admission - Regular)
Time: 2 Hours
Credit: 3

Section A

Answer all questions. Each question carries 2 marks.

1. Find the slope of the line passing through $(2,3)$ and $(3,5)$ in slope intercept form.
2. Find the slope of the line parallel to $6 x-3 y=12$.
3. Graph the line $y=-3$
4. Give an example for two matrices A and B for which $A B \neq B A$
5. Find the values of the variables in the equation $\left[\begin{array}{cc}3 & 4 \\ -8 & 1\end{array}\right]=\left[\begin{array}{ll}3 & x \\ y & z\end{array}\right]$
6. Compute $\left[\begin{array}{cc}6 & 8 \\ -1 & 9\end{array}\right]+\left[\begin{array}{cc}11 & 5 \\ 6 & 1\end{array}\right]-\left[\begin{array}{cc}2 & 11 \\ 31 & 4\end{array}\right]$
7. Verify that the matrices $\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$ and $\left[\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right]$ are inverses of each other.
8. Graph the linear inequality $x+y \leq 2$.
9. Restate the following linear programming problem by introducing slack variables

Maximize $\mathrm{Z}=3 x_{1}+2 x_{2}+x_{3}$,
Subject to, $2 x_{1}+x_{2}+x_{3} \leq 150$,

$$
\begin{aligned}
2 x_{1}+2 x_{2}+2 x_{3} & \leq 200, \\
2 x_{1}+3 x_{2}+3 x_{3} & \leq 320 \\
x_{1}, x_{2}, x_{3} & \geq 0 .
\end{aligned}
$$

10. Find the transpose of the matrix $\left(\begin{array}{ccc}1 & 3 & 5 \\ 6 & 8 & -2 \\ 0 & -8 & 7\end{array}\right)$
11. Form an L.P.P for the following problem.
"A 4-H member raises only goats and pigs. She wants to raise no more than 16 animals, including no more than 10 goats. She spends $\$ 25$ to raise a goat and $\$ 75$ to raise a pig, and she has $\$ 900$ available for this project. Each goat produces $\$ 12$ in profit and each pig $\$ 40$ in profit. How many goats and how many pigs should she raise to maximize total profit?".
12. State the dual for the linear programming problem

$$
\begin{aligned}
\text { Maximize } \mathrm{Z}=2 x_{1}+7 x_{2} & +4 x_{3} \\
\text { Subject to } x_{1}+x_{2}+x_{3} & \leq 5, \\
x_{1}+x_{2} & \leq 4, \\
2 x_{1}+x_{2}+3 x_{3} & \leq 15, \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

(Ceiling: 20 Marks)

Section B

Answer all questions. Each question carries 5 marks.
13. Use the echelon method to solve the system of equations $4 x+y=9,3 x-y=5$.
14. Solve the system of equations by using the inverse of the coefficient matrix if it exists

$$
2 x+5 y=15, \quad x+4 y=9
$$

15. Maximize $Z=5 x+2 y$, subject to $4 x-y \leq 16,2 x+y \geq 11, x \geq 3, y \leq 8$.
16. Find the maximum value of the objective function $Z=3 x+4 y$

Subject to $2 x+y \leq 4, \quad-x+2 y \leq 4, \quad x, y \geq 0$
17. Compute A^{-1} for $A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 0 & 2 & -1 \\ 1 & 0 & 2\end{array}\right)$
18. Graph the linear inequality $y-2 x \leq 4, y \geq 2-x, x, y \geq 0$.
19. Draw the feasible region for the given L.P.P

Minimize $Z=2 x+4 y$
Subject to $x+2 y \geq 10$,

$$
\begin{gathered}
3 x+y \geq 10 \\
x, y \geq 0
\end{gathered}
$$

(Ceiling: 30 Marks)

Section C

Answer any one question. The question carries 10 marks.
20. Solve by writing the dual of the problem

Minimize $W=3 y_{1}+2 y_{2}$
Subject to $y_{1}+2 y_{2} \geq 10, \quad y_{1}+y_{2} \geq 8, \quad 2 y_{1}+y_{2} \geq 12, \quad y_{1}, y_{2}, y_{3} \geq 0$
21. Use the Gauss-Jordan method to solve the system.

$$
\begin{gathered}
x+2 y-z=0 \\
3 x-y+z=6 \\
-2 x-4 y+2 z=0
\end{gathered}
$$

