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PART – A 

Answer all questions. Each question carries 1 weightage. 

1. Define isometry of ℝ2. Write an example. 

2. Find all subgroups of ℤ2 × ℤ4  of order 4. 

3. Let 𝑋 be a 𝐺-set. Then show that 𝐺𝑥 is a subgroup of 𝐺 for each 𝑥 ∈ 𝑋. 

4. Prove that every group of order 159 is cyclic. 

5. Find the center of  𝑆3 × 𝐷4. 

6. Find isomorphic refinements of the two series {0} < 10ℤ < ℤ  and {0} < 25ℤ < ℤ . 

7. Show that the group 𝑆5 is not solvable.  

8. Prove that 𝑥3 + 3𝑥 + 2 is irreducible in ℤ5[𝑥]. 

 (8 × 1 = 8 Weightage) 

PART – B 

Answer any two questions from each unit. Each question carries 2 weightage. 

 

UNIT 1 

9. Prove that if 𝑚 divides the order of a finite abelian group 𝐺, then 𝐺 has a subgroup of 

order m. 

10. Show that if 𝑀 is a maximal normal subgroup of 𝐺 if and only if   𝐺 𝑀⁄    is simple. 

11. Show that if 𝐻  and 𝐾  are normal subgroups of a group 𝐺  ,then 𝐻⋂𝐾 is a normal 

subgroup of 𝐺. 

 

UNIT 2 

12.  Prove that for a prime number 𝑝, every group 𝐺 of order 𝑝2  is abelian. 

13.  State and Prove Second Sylow theorem. 

14.  Prove that no group of order 36 is simple. 

 



UNIT 3 

15. Give the addition and multiplication tables for group algebra ℤ2𝐺 where 𝐺 = {𝑒, 𝑎} is 

cycle of order 2. 

16. Show that 𝑥4 − 22𝑥2 + 1 is irreducible over ℚ. 

17. Determine all groups of order 10 up to isomorphism. 

(6 × 2 = 12 Weightage) 

PART – C 

Answer any two questions. Each question carries 5 weightage. 

18. (a) State and Prove Burnside’s Formula 

(b) How many distinguishable necklaces (with no clasp) can be made using seven    

      different colored beads of the same size. 

19. (a) State and Prove Second isomorphism theorem. 

(b) If 𝑁 is a normal subgroup of 𝐺, and if 𝐻 is any subgroup of 𝐺, then show that   

      𝐻 ∨ 𝑁 = 𝑁𝐻 = 𝐻𝑁 

20. (a) State and Prove Cauchy’s Theorem. 

(b) Prove that every group of order 1645 is abelian and cyclic. 

21. (a) State and Prove Division Algorithm for 𝐹[𝑥]. 

(b) State and Prove Factor Theorem. 

(2 × 5 = 10 Weightage) 
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