\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022
 (CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P CSS1 C01 - DISCRETE MATHEMATICAL STRUCTURES
 (Computer Science)
 (2019 Admission onwards)

Time : 3 Hours
Maximum : 30 Weightage

Part-A

Answer any four questions. Each question carries 2 weightage.

1. Prove that $n(A U B)=n(A)+n(B)-n(A \cap B)$ for any two sets A and B.
2. Define Existential Quantifier.Given $P=\{2,3,4,5,6\}$, state the truth value of the statement $(\exists x \in p)(x+3=10)$.
3. Let $A=\{0,1,2,3\}$ and define a relation R on A as follows: $R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2)$, $(3,0),(3,3)\}$. Is R reflexive? symmetric? transitive?
4. Explain Boolean Algebra.
5. Explain Semigroup and monoid with example
6. Differentiate bipartile and complete bipartile graph with example.
7. Define with an example: i. Euler circuit ii. Hamiltonian circuit

$$
(4 \times 2=8 \text { Weightage })
$$

Part-B

Answer any four questions. Each question carries 3 weightage.
8. (a) Get the contra positive of the statement "If it is raining then I get wet".
(b) Show that the propositions $\mathrm{p}-->\mathrm{q}$ and $\neg \mathrm{p} \mathrm{V}$ q are logically equivalent.
9. Suppose $f(x)=x+2, g(x)=x-2$, and $h(x)=3 x$ for $x \varepsilon R$, where R is the set of real numbers. Find (g of), ($\mathrm{f} \circ \mathrm{g} \mathrm{f}),(\mathrm{f} \circ \mathrm{f})$ and ($\mathrm{g} \circ \mathrm{og}$)
10. Which elements of the poset $(\{2,4,5,10,12,20,25\}, /)$ are maximal and which are minimal?
11. Define distributive and complemented lattices.Explain with example.
12. Show that the set $G\{-1,1,-i, i)$ is a group with respect to multiplication.
13. Explain connectedness in graph theory.
14. Prove that the number of edges in a tree with n vertices is $n-1$. Conversely show that a connected graph with n vertices and $n-1$ edges is a tree.

Part-C

Answer any two questions. Each question carries 5 weightage.
15. a. Prove the following $(\neg \mathrm{P} \vee \mathrm{Q}) \wedge(\mathrm{P} \wedge(\mathrm{P} \wedge \mathrm{Q})) \equiv \mathrm{P} \wedge \mathrm{Q}$
b. Show that $((P \rightarrow Q) \wedge(Q \rightarrow R)) \rightarrow(P \rightarrow R)$ is a tautology.
16. Determine whether the following posets are lattices. (i) $(\{1,2,3,4,5\}, /)$ (ii) $(\{1,2,4,8,16\}, /)$
17. Prove that every finite integral domain is a field.
18. Find the shortest path between A to H by Dijkstra's algorithm for the following weighted graph.

