\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022
 (CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH1 C02 - LINEAR ALGEBRA

(Mathematics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part A

Answer any all questions. Each question carries 1 weightage.

1. Let V be a vector space over the field F and α be any vector in V then prove that $0 \alpha=0$
2. Define coordinate matrix of α relative to the ordered basis \mathcal{B}.
3. Let F be a field and let T be the linear operator on F^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}\right)$. Then prove that T is non-singular and find T^{-1}.
4. Give a linear functional on \mathbb{R}^{3}.
5. Define hyperspace of a vector space V.
6. Define characteristic value and characteristic vector of a linear transformation T on a vector space V.
7. Let (\mid) be the standard inner product on \mathbb{R}^{2}. Let $\alpha=(2,4), \beta=(-2,2)$. If γ is a vector such that $(\alpha \mid \gamma)=-2$ and $(\beta \mid \gamma)=6$, find γ.
8. Give an orthonormal set in \mathbb{R}^{3} with standard outer product.

$$
(8 \times 1=8 \text { Weightage })
$$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

9. Let S be a non-empty subset of a vector space V. Prove that the set of all linear combinations of vectors in S is the subspace spanned by S.
10. Let V be a bvector space which is psanned by a finite set of vectors $\beta_{1}, \beta_{2}, \ldots \beta_{m}$. Then prove that any independent set of vectors in V is finite and contains no more than m elements.
11. Find the range, rank, null space and nullity of zero transformation and the identity transformation on a finite dimensional space V

UNIT - II

12. Let T be the linear transformation from \mathbb{R}^{3} into \mathbb{R}^{2} defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{3}, 2 x_{2}-x_{3}\right)$. IF $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ and $\mathcal{B}^{\prime}=\left\{\beta_{1}, \beta_{2}\right\}$, where $\alpha_{1}=(1,0,-1), \alpha_{2}=(2,2,2), \alpha_{3}=(1,0,0), \beta_{1}=(1,0), \beta_{2}=(0,1)$. Find the matrix of T relative to the pair $\mathcal{B}, \mathcal{B}^{\prime}$
13. Let F be a field and let f be the linear functional on F^{2} defined by $f\left(x_{1}, x_{2}\right)=3 x_{1}+4 x_{2}$. Let $T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}, 2 x_{1}+x_{2}\right)$ and $g=T^{t} f$. Find $g\left(x_{1}, x_{2}\right)$
14. Define T conductor of α into W. Prove that $S(\alpha, W)$ is an ideal in the polynomial algebra $F[x]$.

UNIT - III

15. Let V be a finite dimensional vector space. Let $W_{1}, W_{2}, \ldots W_{k}$ be subspaces of V and let $W=W_{1}+W_{2}+\ldots+W_{k}$. Then prove that $W_{1}, W_{2}, \ldots W_{k}$ are independent if and only if For each $j, 2 \leq j \leq k$, we have $W_{j} \cap\left(W_{1}+W_{2}+\cdots+W_{j-1}\right)=\{0\}$
16. If V is an inner product space then for any vectors α and β in V and any scalr c prove that $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|,\|c \alpha\|=|c|\|\alpha\|$ and $\|\alpha\|>0$ for $\alpha \neq 0$.
17. Apply the Gram-Schmidt process to the vectors $\beta_{1}=(3,0,4), \beta_{2}=(-1,0,7), \beta_{3}=(2,9,11)$ to obtain an orthonormal basis for \mathbb{R}^{3} with the standard inner product.
$(6 \times 2=12$ Weightage $)$

Part C

Answer any two questions. Each question carries 5 weightage.
18. If W_{1} and W_{2} are finite dimensional subspace of a vector space V then prove that $W_{1}+W_{2}$ is finite dimensional. Also verify $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right)$.
19. (a) Let T be a linear transformation from V in to W, where V and W are finite dimensional and $\operatorname{dim} V=\operatorname{dim} W$ then show that T is non-singular if and only if T is onto
(b) Prove that every n dimensional vector space over the field F is isomorphic to the space F^{n}.
20. (a) Let T be a linear operator on an n dimensional vector space V. Show that the characteristic and the minimal polynomial for T have the same roots, except for multiplicities.
(b) Let T be a linear operator on \mathbb{R}^{3} which is represented in the standard ordered basis by the matrix $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$. Find the characteristic and minimal polynomial for T.
21. (a) Prove that the mapping $\beta \rightarrow \beta-E \beta$ is the orthogonal projection of V on W^{\perp}. where V is an inner product space, W a finite dimensional subspace, and E the orthogonal projection of V on W.
(b) State and Prove Bessel's Inequality.
$(2 \times 5=10$ Weightage $)$

