37. (i) The rate at which the volume of sales(Q) for a new type of printer increase after an advertising campaign is given by the equation $\frac{d Q}{d t}=0.05(500-Q)$, given that $\mathrm{Q}=0$ at $\mathrm{t}=0 . \mathrm{Q}$ is the number of printers sold, t is the time in years. Solve the differential equation to obtain an expression for Q in terms of t .
(ii) Write down differential equations of the type limited and unlimited growth..

Name:
Reg. No:
\qquad

FIRST SEMESTER M.A. DEGREE EXAMINATION, NOVEMBER 2022
(CBCSS - PG)
(Regular/Supplementary/Improvement)
CC19P ECO1 C04- QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS-I

> (Economics)
(2019 Admission onwards)
Maximum: 30 Weightage

Part A

Answer all questions. Each question carries $1 / 5$ weightage.

1. A negatively sloped curve moves:
(a) Upward
(b) Downward
(c) Vertically
(d) Horizontally
2. A diagonal matrix in which each of the diagonal element's unity is called:
(a) Unit matrix
(b) Triangular matrix
(c) Diagonal matrix
(d) Zero matrix
3. The value of the determinant
$\left|\begin{array}{cc}a-b & a+b \\ a+b & a-b\end{array}\right|$ is:
(a) $-4 a b$
(b) $4 a b$
(c) $a^{2}-b^{2}$
(d) None of these
4. The amount of fertilizer applied (x) and yield per plot (y) of a crop are related by an equation $y=20.38+2.5 x-0.125 x^{2}$. Then the quantity of fertilizer to be used to get maximum yield is equal to:
(a) 20
(b) 10
(c) 20.38
(d) 2.5
5. The rank of the matrix $\left[\begin{array}{cc}6 & 4 \\ 12 & 8\end{array}\right]$ is:
(a) 0
(b) 1
(c) 2
(d) None of these
6. $\lim _{x \rightarrow 1}\left(x^{3}+4\right)$ is:
(a) 5
(b) 1
(c) 7
(d) None of these
7. If $y=x \log x$, then $\frac{d y}{d x}$ is equal to:
(a) $1+\frac{1}{x}$
(b) $1+\log x$
(c) $1+\frac{1}{x}$
(d) $x+\frac{1}{x}$
8. The slope of the supply function $S=2+4 \mathrm{P}$ is:
(a) 0
(b) 2
(c) 4
(d) 7
9. The demand for a commodity is $\mathrm{D}=-3-\mathrm{p}$. The supply function is $\mathrm{S}=-9+\mathrm{p}$, then the equilibrium price is:
(a) 1
(b) 2
(c) 3
(d) 5
10. If $u=e^{-3 x y z}$, then $\frac{\partial u}{\partial y}$ at $\mathrm{x}=1, \mathrm{z}=1$ is:
(a) $-3 e^{-3 y}$
(b) $3 e^{-4 y}$
(c) $e^{-3 y}$
(d) $-3 e^{-3 x y z}$
11. Which of the following approximates the marginal impact on the objective function caused by a small change in the constant of the constraint:
(a) the Legrange multiplier
(b) the Jacobian
(c) the Hessian
(d) the determinant
12. The producers surplus when the supply function is $p=10+2 q$ and the equilibrium price 20 is:
(a) 35
(b) 25
(c) 100
(d) 50
13. The order of the differential equation $\sqrt{1+\frac{d^{2} y}{d x^{2}}}$ is:
(a) First
(b) Second
(c) Third
(d) None of these
14. Which of the following areas can the difference equation be applied:
(a) Cob-Web model
(b) Harrod Domar model
(c) Both a and b
(d) None of these
15. At the rate of 8.5% p.a. simple interest, a sum of Rs. 4800 will earn how much interest in 2 years 3 months ?
(a) 796
(b) 816
(c) 918
(d) 956
($15 \times 1 / 5=3$ Weightage)
Part B (Very Short Answer Questions)
Answer any five questions. Each question carries 1 weightage
16. Write any four properties of determinations
17. If $y=(1-\sqrt{x})(1+\sqrt{x})$, find $\frac{d y}{d x}$.
18. Define price elasticity of demand.
19. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z=\frac{x}{y}$.
20. The marginal cost function for a certain product is $M C=3 q^{2}-4 q+5$. Find the total cost function given the fixed cost is 100 .
21. Solve $\frac{d y}{d x}+\frac{2}{x} y=\frac{1}{x}$.
22. The salary of employee increases every year by 7% of his initial salary and his initial basic salary is Rs. 5000 . Find his salary at the end of 10 th year.
23. Find the rate of interest per annum if the simple interest on a Principal of Rs. 6,000 is 800 for 6 years
($5 \times 1=5$ Weightage)

Part C (Short Answer Questions)

Answer any seven questions. Each question carries 2 weightage.

24. Explain implicit and explicit functions with examples.
25. Obtain the inverse of matrix
$\left[\begin{array}{ccc}2 & -3 & 0 \\ 3 & 1 & -2 \\ -1 & 0 & -4\end{array}\right]$
26. Solve the system of equations by Crammer's rule

$$
2 x-3 y+5 z=11,5 x+2 y-7 z=-12,-4 x+3 y+z=5
$$

27. Find the rank of the matrix $\left(\begin{array}{ccc}1 & 2 & 3 \\ 3 & 6 & 9 \\ 2 & 4 & 6\end{array}\right)$
28. Define the term limit of a function. Find $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$.
29. The demand function faced by a firm is $p=500-0.2 x$ and its cost function is $C=25 x+10000$ ($\mathrm{p}=$ =price, $\mathrm{x}=$ output, $\mathrm{C}=\operatorname{cost}$). Find the output at which the profits of the firm are maximum. Also find the price it will charge.
30. Given: $Z=x^{4} e^{3 y}$. Find all partial derivatives of second order.
31. Optimize $T C=35+5 Q-2 Q^{2}+2 Q^{3}$.
32. For the data given below determine (i) market price P_{t} in any time period (ii) the equilibrium price P_{e} $Q_{d t}=180-0.75 P_{t}, Q_{s t}=-30-0.3 P_{t-1}, \quad P_{0}=220$.
33. Find the amount at the end of 5 th year for Rs. 5000 at 10% p.a., simple interest. What is the total amount of growth?
$(7 \times 2=14$ Weightage $)$

Part D (Essay questions)

Answer any two questions. Each question carries 4 weightage.
34. Find the adjoint of the matrix and verify that $A(\operatorname{Adj} A)=|A| I$ if $A=\left(\begin{array}{ccc}1 & 4 & 5 \\ 3 & 2 & 2 \\ 0 & 1 & -3\end{array}\right)$
35. A firm has the following total cost and demand functions:
$C=\frac{1}{3} Q^{3}-7 Q^{2}+111 Q+50$ and $Q=100-p$. Find profit maximizing level of output; also find profit at this level of output.
36. Demand and Supply laws under pure competition are given by $p_{d}=16-x^{2}$ and $p_{s}=4+x$. Determine market price, consumer's surplus and producer's surplus

