- 37. (i) The rate at which the volume of sales(Q) for a new type of printer increase after an advertising campaign is given by the equation $\frac{dQ}{dt} = 0.05(500 Q)$, given that Q=0 at t=0. Q is the number of printers sold, t is the time in years. Solve the differential equation to obtain an expression for Q in terms of t.
 - (ii) Write down differential equations of the type limited and unlimited growth..

 $(2 \times 4 = 8 \text{ Weightage})$

22P158

(Pages: 4)

FIRST SEMESTER M.A. DEGREE EXA

(CBCSS - I

(Regular/Supplementary

CC19P ECO1 C04 - QUANTITATIVE METH

(Economic

(2019 Admission

Time: Three Hours

Part A

Answer all questions. Each quest

]	1.	A negatively sloped curve moves:				
		(a) Upward	(b) Downward	(c		
-	2.	A diagonal matrix in which each of the diagonal elem				
		(a) Unit matrix	(b) Triangular matrix	(c		
	3.	The value of the determinant $\begin{vmatrix} a-b & a+b \\ a+b & a-b \end{vmatrix}$ is:	ninant			
		(a) -4 <i>ab</i>	(b) 4 <i>ab</i>	(c)		
2	4.	The amount of fertilizer applied (x) and yield per plot $y = 20.38 + 2.5x - 0.125x^2$. Then the quantity of the second s				
		(a) 20	(b) 10	(c)		
4	5.	The rank of the matrix	$\begin{bmatrix} 6 & 4 \\ 12 & 8 \end{bmatrix}$ is:			
		(a) 0	(b) 1	(c)		
(6.	$\lim_{x ightarrow 1} (x^3+4)$ is:				
		(a) 5	(b) 1	(c)		
	7.	If $y = x \log x$, then $\frac{d}{d}$ (a) $1 + \frac{1}{x}$	$\frac{dy}{dx}$ is equal to:			
		(a) $1 + \frac{1}{x}$	(b) $1 + \log x$	(c)		
8	8.	The slope of the supply	y function $S = 2 + 4P$ is:			
		(a) 0	(b) 2	(c)		
Ç	9.	The demand for a commodity is $D=-3-p$. The supply				
		(a) 1	(b) 2	(c)		

(1)

) Na	ame:							
R	eg. No:							
AMINATION, NOVEMBER 2022								
PG)								
y/Improvement)								
IODS FOR ECONOMIC ANALYSIS-I								
cs)								
onwards)								
	Maximum: 30 Weightage							
tion carries 1/5 weightage.								
c) Vertically	(d) Horizontally							
ment's unity is call	led:							
c) Diagonal matrix	(d) Zero matrix							

 $a^2 - b^2$ (d) None of these

ot (y) of a crop are related by an equation Fertilizer to be used to get maximum yield is equal to: c) 20.38 (d) 2.5

-) 2 (d) None of these
- (d) None of these
-) $1 + \frac{1}{x}$ (d) $x + \frac{1}{x}$
-) 4 (d) 7

upply function is S = -9 + p, then the equilibrium price is: (c) 3 (d) 5

Turn Over

10.	If $u = e^{-3xyz}$, then $\frac{\partial u}{\partial x}$	$\frac{x}{y}$ at x = 1, z = 1 is: (b) $3e^{-4y}$							
	(a) $-3e^{-3y}$	(b) $3e^{-4y}$	(c) e^{-3y}	(d) $-3e^{-3xyz}$					
11.	Which of the following change in the constant (a) the Legrange multi (c) the Hessian	of the constraint:	inal impact on the objecti (b) the Jacobian (d) the determinant	ive function caused by a small					
12.	The producers surplus	when the supply functio	on is $p = 10+2q$ and the eq	uilibrium price 20 is:					
	(a) 35	(b) 25	(c) 100	(d) 50					
13.	The order of the differ	ential equation $\sqrt{1+rac{d}{dt}}$	$\frac{\overline{y}}{x^2}$ is:						
	(a) First	(b) Second	(c) Third	(d) None of these					
14.	Which of the following	g areas can the difference	e equation be applied:						
	(a) Cob-Web model		(b) Harrod Domar model						
	(c) Both a and b		(d) None of these						
15.	At the rate of 8.5% p. months ?	a. simple interest, a sum	of Rs.4800 will earn how	w much interest in 2 years 3					
	(a) 796	(b) 816	(c) 918	(d) 956					
				$(15 \times 1/5 = 3 \text{ Weightage})$					
	Part B (Very Short Answer Ouestions)								

Part B (Very Short Answer Questions)

Answer any *five* questions. Each question carries 1 weightage.

16. Write any four properties of determinations.

^{17.} If
$$y = (1 - \sqrt{x})(1 + \sqrt{x})$$
, find $\frac{dy}{dx}$.

- 18. Define price elasticity of demand.
- 19. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z = \frac{x}{y}$.
- 20. The marginal cost function for a certain product is $MC = 3q^2 4q + 5$. Find the total cost function given the fixed cost is 100.
- 21. Solve $\frac{dy}{dx} + \frac{2}{x}y = \frac{1}{x}$.
- 22. The salary of employee increases every year by 7% of his initial salary and his initial basic salary is Rs.5000. Find his salary at the end of 10 th year.
- 23. Find the rate of interest per annum if the simple interest on a Principal of Rs. 6,000 is 800 for 6 years.

 $(5 \times 1 = 5 \text{ Weightage})$

- Part C (Short Answer Questions)
- 24. Explain implicit and explicit functions with examples.
- 25. Obtain the inverse of matrix

$$\begin{bmatrix} 2 & -3 & 0 \\ 3 & 1 & -2 \\ -1 & 0 & -4 \end{bmatrix}$$

26. Solve the system of equations by Crammer's rule.

$$2x - 3y + 5z = 11, 5x + 2y - 7z = -12, -4x - (1 - 2)$$

- 27. Find the rank of the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 6 & 9 \\ 2 & 4 & 6 \end{pmatrix}$.
- 28. Define the term limit of a function. Find $\lim_{x\to 2} \frac{x^2-4}{x-2}$.
- 29. The demand function faced by a firm is p = 500 0.2x and its cost function is C = 25x + 10000price it will charge.
- 30. Given: $Z = x^4 e^{3y}$. Find all partial derivatives of second order.
- 31. Optimize $TC = 35 + 5Q 2Q^2 + 2Q^3$.
- 32. For the data given below determine (i) market price P_t in any time period (ii) the equilibrium price P_e . $Q_{dt} = 180 - 0.75 P_t, \ Q_{st} = -30 - 0.3 P_{t-1}, \ P_0 = 220.$
- 33. Find the amount at the end of 5 th year for Rs. 5000 at 10% p.a., simple interest. What is the total amount of growth?

Part D (Essay questions) Answer any two questions. Each question carries 4 weightage.

- 34. Find the adjoint of the matrix and verify that A(Adj)
- 35. A firm has the following total cost and demand functions: $C = \frac{1}{3}Q^3 - 7Q^2 + 111Q + 50$ and Q = 100 - p. Find profit maximizing level of output; also find profit at this level of output.
- 36. Demand and Supply laws under pure competition are given by $p_d = 16 x^2$ and $p_s = 4 + x$. Determine market price, consumer's surplus and producer's surplus.

(2)

22P156

Answer any seven questions. Each question carries 2 weightage.

+3y+z=5.

(p=price, x=output, C=cost). Find the output at which the profits of the firm are maximum. Also find the

 $(7 \times 2 = 14 \text{ Weightage})$

$$A) = |A|I \;\; ext{if}\;\; A = egin{pmatrix} 1 & 4 & 5 \ 3 & 2 & 2 \ 0 & 1 & -3 \end{pmatrix}.$$