\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022
 (CBCSS-PG)
 (Regular/Supplementary/Improvement)
 CC19P MTH1 C04 - DISCRETE MATHEMATICS
 (Mathematics)
 (2019 Admission onwards)

Time: Three Hours
Maximum: 30 Weightage

Part A

Answer all questions. Each carries 1 weightage.

1. Define poset. Give example of a poset with and without a maximum element.
2. Show that in a Boolean algebra $\left(X,+, .,^{\prime}\right)$

$$
x+(y+z)=(x+y)+z \text { and } x \cdot(y \cdot z)=(x \cdot y) \cdot z \forall x, y, z \in X
$$

3. Define Characteristic number of a symmetric Boolean function. Find the Characteristic numbers of $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}$
4. Define self complementary graphs. Show that if G is self complementary graph of order n, then $n \equiv 0$ or $1(\bmod 4)$
5. Show that if $\{x, y\}$ is a 2 -edge cut of G, then every cycle of G containing x must also contain y.
6. Prove or disprove: If H is a subgraph of G, then
(a) $\kappa(H) \leq \kappa(G)$
(b) $\lambda(H) \leq \lambda(G)$
7. Find a grammar that generates $L=\left\{w \in\{a\}^{*} ;|w| \bmod 3=0\right\}$
8. Show that the language $L=\left\{a w a ; w \in\{a, b\}^{*}\right\}$ is regular.
$(8 \times 1=8$ Weightage)

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

Unit I

9. Let (X, \leq) be a poset and A a nonempty finite subset of X. Then A has atleast one minimal element. Also A has a minimum element if and only if it has a unique minimal element.
10. Let $(X,+, ., \prime)$ be a finite Boolean algebra. Show that every element $x \in X$ can be uniquely expressed as the sum of all atoms contained in x.
11. Define D.N.F and C.N.F. Write the D.N.F and C.N.F of $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2}^{\prime} x_{3}$

Unit II

12. (a) Show that the connectivity and edge connectivity of a simple cubic graph G are equal
(b) Draw a simple graph with $\kappa=1, \lambda=2$, and $\delta=3$.
13. (a) Show that every connected graph contains a spanning tree.
(b) Draw a spanning tree of K_{5} and a spanning sub-graph which is not a tree.
14. (a) State and prove Euler formula for connected plane graphs.
(b) Define self dual graph and show that for self dual graphs $2 n=m+2$

Unit III

15. Show that $\left|u^{n}\right|=n|u|$ for all strings $u \in \Sigma^{*}$ and all n
16. (a) Define reverse of a string. Prove that $\left(w^{R}\right)^{R}=w$ for all $w \in \Sigma^{*}$
(b) Prove that $\left(L_{1} L_{2}\right)^{R}=L_{2}^{R} L_{1}^{R}$ for all languages L_{1} and L_{2}.
17. Find a dfa and an nfa that accepts all strings on $\Sigma=\{a, b\}$ starting with the prefix $a b$.

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. State and prove Stone representation theorem for finite Boolean algebras.
19. (a) Show that a graph is bipartite if and only if it contains no odd cycles.
(b) Prove that every tree is bipartite
20. Show that a graph G with atleast three vertices is 2 connected if and only if any two vertices of G lies on a common cycle.
21. Convert the nfa into equivalent dfa

