Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH1 C05 - NUMBER THEORY

(Mathematics)

(2019 Admission onwards)

Time: 3 Hours Maximum: 30 Weightage

Part A

Answer any all questions. Each question carries 1 weightage.

1. Prove that
$$\forall n \geq 1, \Lambda(n) = -\sum\limits_{d/n} \mu(d) \log d.$$

- 2. Show that $(f^{-1})' = -f' * (f * f)^{-1}$, provided $f(1) \neq 0$.
- 3. State and prove Legendre's identity.
- 4. Define Chebyshev's ψ function and show that $\psi(x) = \sum_{m \leq log_2 x} \sum_{p < x^{1/m}} \log p$.
- 5. Let $\{a(n)\}$ be a non-negative sequence such that $\sum_{n \leq x} a(n) \left[\frac{x}{n}\right] = x \log x + O(x), \ \forall \ x \geq 1$. Then show that $\sum_{n \leq x} \frac{a(n)}{n} = \log x + O(1), \ \forall x \geq 1$.
- 6. Using quadratic reciprocity law, determine whether (219|383) = 1.
- 7. Using shift cryptosystem with N=27 and b=9, find the cipher text of 'TOMORROW AT SIX AM'. (blank=26)
- 8. Find the inverse of the matrix $\begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix}$ (mod 26).

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT - I

- 9. (a) Prove that $\forall n \geq 1, \sum_{d/n} \phi(d) = n.$
 - (b) Find all integers n such that $\phi(n) = \phi(2n)$.
- 10. Prove that the set of all multiplicative functions is a subgroup of the set of all arithmetical functions with $f(1) \neq 0$ with respect to the Dirichlet multiplication.

11. Prove that for every $n \ge 1$, $\sum_{d/n} \lambda(d) = \begin{cases} 1, & \text{if } n \text{ is a square} \\ 0, & \text{otherwise} \end{cases}$

UNIT - II

- 12. Prove that for $x \geq 2$, $\tau(x) = \pi(x) \log x \int\limits_{2}^{x} \frac{\pi(t)}{t} dt$ and $\pi(x) = \frac{\tau(x)}{\log x} + \int\limits_{2}^{x} \frac{\tau(t)}{t \log^2 t} dt$.
- 13. Show that $\forall x \geq 1, \sum_{n \leq x} \psi(\frac{x}{n}) = x \log x x + O(\log x)$ and $\sum_{n \leq x} \tau(\frac{x}{n}) = x \log x + O(x)$.
- 14. Show that there is a constant A such that $\sum_{p \le x} \frac{1}{p} = \log \log x + A + O(\frac{1}{\log x}), \ \forall \ x \ge 2.$

UNIT - III

- 15. If *P* is an odd integer, then prove that $(-1|P) = (-1)^{\frac{P-1}{2}}$ and $(2|P) = (-1)^{\frac{P^2-1}{8}}$.
- 16. Solve the system of simultaneous congruence $2x + 3y \equiv 1 \pmod{26}$, $7x + 8y \equiv 2 \pmod{26}$.
- 17. Describe public key cryptosystem and explain RSA cryptosystem.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Show that the set G of all arithmetical functions f with $f(1) \neq 0$ is an abelian group with respect to the Dirichlet multiplication.
- 19. State and prove Euler's summation formula. Hence show that

$$\forall~x\geq 1,~\sum_{n\leq x}rac{1}{n^s}=rac{x^{1-s}}{1-s}+\zeta(s)+O(x^{-s}),~ ext{if}~s>0, s
eq 1~ ext{where}~ \zeta ext{is the Remann zeta function}.$$

- 20. Prove that the following relations are logically equivalent:
 - (a) $\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1$
 - (b) $\lim_{x \to \infty} \frac{\tau(x)}{x} = 1$
 - $(c) \lim_{x o \infty} rac{\psi(x)}{x} = 1$
- 21. State and prove Euler's criterion for Legendre's symbol. Also check whether 6 is a quadratic residue modulo 23.

 $(2 \times 5 = 10 \text{ Weightage})$
