\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH1 C05 - NUMBER THEORY

(Mathematics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part A

Answer any all questions. Each question carries 1 weightage.

1. Prove that $\forall n \geq 1, \Lambda(n)=-\sum_{d / n} \mu(d) \log d$.
2. Show that $\left(f^{-1}\right)^{\prime}=-f^{\prime} *(f * f)^{-1}$, provided $f(1) \neq 0$.
3. State and prove Legendre's identity.
4. Define Chebyshev's ψ function and show that $\psi(x)=\sum_{m \leq l o g_{2} x} \sum_{p \leq x^{1 / m}} \log p$.
5. Let $\{a(n)\}$ be a non-negative sequence such that $\sum_{n \leq x} a(n)\left[\frac{x}{n}\right]=x \log x+O(x), \forall x \geq 1$. Then show that $\sum_{n \leq x} \frac{a(n)}{n}=\log x+O(1), \forall x \geq 1$.
6. Using quadratic reciprocity law, determine whether $(219 \mid 383)=1$.
7. Using shift cryptosystem with $N=27$ and $b=9$, find the cipher text of 'TOMORROW AT SIX AM'. (blank=26)
8. Find the inverse of the matrix $\left[\begin{array}{ll}2 & 3 \\ 7 & 8\end{array}\right](\bmod 26)$.
$(8 \times 1=8$ Weightage)

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT - I

9. (a) Prove that $\forall n \geq 1, \sum_{d / n} \phi(d)=n$.
(b) Find all integers n such that $\phi(n)=\phi(2 n)$.
10. Prove that the set of all multiplicative functions is a subgroup of the set of all arithmetical functions with $f(1) \neq 0$ with respect to the Dirichlet multiplication.
11. Prove that for every $n \geq 1, \sum_{d / n} \lambda(d)= \begin{cases}1, & \text { if } n \text { is a square } \\ 0, & \text { otherwise }\end{cases}$

UNIT - II

12. Prove that for $x \geq 2, \tau(x)=\pi(x) \log x-\int_{2}^{x} \frac{\pi(t)}{t} d t$ and $\pi(x)=\frac{\tau(x)}{\log x}+\int_{2}^{x} \frac{\tau(t)}{t \log ^{2} t} d t$.
13. Show that $\forall x \geq 1, \sum_{n \leq x} \psi\left(\frac{x}{n}\right)=x \log x-x+O(\log x)$ and $\sum_{n \leq x} \tau\left(\frac{x}{n}\right)=x \log x+O(x)$.
14. Show that there is a constant A such that $\sum_{p \leq x} \frac{1}{p}=\log \log x+A+O\left(\frac{1}{\log x}\right), \forall x \geq 2$.

UNIT - III

15. If P is an odd integer, then prove that $(-1 \mid P)=(-1)^{\frac{P-1}{2}}$ and $(2 \mid P)=(-1)^{\frac{P^{2}-1}{8}}$.
16. Solve the system of simultaneous congruence $2 x+3 y \equiv 1(\bmod 26), 7 x+8 y \equiv 2(\bmod 26)$.
17. Describe public key cryptosystem and explain RSA cryptosystem.

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. Show that the set G of all arithmetical functions f with $f(1) \neq 0$ is an abelian group with respect to the Dirichlet multiplication.
19. State and prove Euler's summation formula. Hence show that
$\forall x \geq 1, \sum_{n \leq x} \frac{1}{n^{s}}=\frac{x^{1-s}}{1-s}+\zeta(s)+O\left(x^{-s}\right)$, if $s>0, s \neq 1$ where ζ is the Remann zeta functon.
20. Prove that the following relations are logically equivalent:
(a) $\lim _{x \rightarrow \infty} \frac{\pi(x) \log x}{x}=1$
(b) $\lim _{x \rightarrow \infty} \frac{\tau(x)}{x}=1$
(c) $\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}=1$
21. State and prove Euler's criterion for Legendre's symbol. Also check whether 6 is a quadratic residue modulo 23.
$(2 \times 5=10$ Weightage $)$

