22P157

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MST1 C04 / CC22P MST1 C04 - PROBABILITY THEORY

(Statistics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part-A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Explain independence of events. Show that subclasses of independent classes are independent.
- 2. What do you mean by probability space? If A_n is a sequence of events and A_n converges to A then show that $P(A_n)$ converges to P(A).
- 3. Verify whether following functions are distribution function.

(i)
$$F(x) = \frac{1}{\pi} tan^{-1} x - \infty < x < \infty$$

(ii) $F(x) = \begin{cases} 0 & if x \le 1 \\ 1 - \frac{1}{x} & if x \ge 1 \end{cases}$

- 4. Prove that a distribution function can have atmost countable number of discontinuities.
- 5. State and prove multiplication theorem for two independent non negative random variables.
- 6. Show that the probability density function of a random variable is symmetric if and only if its characteristic function is real.
- 7. Let $\{X_n\}$ and $\{Y_n\}$ be two sequences of random variables and If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{L} c$ then show that $X_n + Y_n \xrightarrow{L} X + c$

$(4 \times 2 = 8 \text{ Weightage})$

Part-B

Answer any *four* questions. Each question carries 3 weightage.

- 8. a) Show that a sigma field is monotone field and conversely
 - b) Let X be a random variable defined over a probability space (Ω, A, P) . Show that aX + b is a random variable.
- 9. (i) State and prove Jensen's inequality.(ii) Show that characteristic function of a random variable is non negative definite.
- 10. State and prove Kolmogorov 0-1 law of probability.

- 11. Define convergence in probability. If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, prove that $X_n Y_n \xrightarrow{P} XY$ as $n \to \infty$.
- 12. State and prove Levy's continuity theorem.
- 13. Let F be the distribution function of a random variable X. Then show that F can be decomposed as $F = \alpha F_c + (1 \alpha)F_d$ where F_c is continuous and F_d is a step function and $0 \le \alpha \le 1$.
- 14. State and prove necessary and sufficient condition to hold WLLN's.

 $(4 \times 3 = 12 \text{ Weightage})$

Part-C

Answer any two questions. Each question carries 5 weightage.

- 15. a) Describe any three properties of distribution function
 - b) Show that a necessary and sufficient condition for a distribution function to be continuous at a point x is p(X = x) = 0
- 16. Define characteristic function. Check whether $|\phi(t)||$ is integrable in the following case, and if so obtain the probability density function using inversion theorem. $\phi(t) = e^{i2t}$
- 17. a) If X is a random variable taking values 1,2,3,... and P(X = i) = pi, i = 1, 2, 3... then show that $E(X) = \sum_{n=1}^{\infty} P(X \ge n)$
 - b) Derive Basic Inequality
- 18. (a) State and prove Helly Bray theorem.
 - (b) State and prove Lindeberg-Levy's form of central limit theorem.

 $(2 \times 5 = 10 \text{ Weightage})$
