\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

 (CBCSS - PG)(Regular/Supplementary/Improvement)

CC19P MST1 C02 / CC22P MST1 C02 - ANALYTICAL TOOLS FOR STATISTICS - II

(Statistics)
(2019 Admission onwards)
Time : 3 Hours

Maximum : 30 Weightage

Part-A

Answer any four questions. Each question carries 2 weightage.

1. Let V be a finite dimensional vectorspace and let $\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right)$ be any basis. Show that
(i) If a set has more than n vectors; then it is linearly dependent.
(ii) If a set has fewer than n vectors; it does not span V
2. if W_{1} and W_{2} are finite subspace of a vectorspace V then prove that $d\left(W_{1} \cap W_{2}\right)=r+m+n$,
3. Define skew hermitian matrix and its properties.
4. Reduce the following matrix in to normal form and find its rank

$$
A=\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & 3 \\
0 & 1 & -1
\end{array}\right]
$$

5. Define characteristic and minimal polynomial. Show that minimal polynomial of a matrix A exists and it is unique.
6. State and prove the necessary and sufficient condition for a system $\mathrm{Ax}=\mathrm{B}$ is consistant.
7. Prove that every quadratic form can be reduced to a form containing square terms by a non-singular linear transformation.

$$
(4 \times 2=8 \text { Weightage })
$$

Part-B

Answer any four questions. Each question carries 3 weightage.
8. Write a short note on Gram- Schmidt orthogonalization process.
9. Define orthogonal matrix. Let A be an arbitrary 2×2 (real) orthogonal matrix, prove : If (a, b) is the first row of A , then $\mathrm{a}^{2}+\mathrm{b}^{2}=1$ and $\mathrm{A}=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ or $\mathrm{A}=\left[\begin{array}{cc}a & b \\ b & -a\end{array}\right]$.
10. Find rank and basis of the row space of the following matrix
$A=\left[\begin{array}{ccccc}1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8\end{array}\right]$
11. Show that geometric multiplicity of a characteristic root cannot exceed algebraic multiplicity of the same.
12.

Find the spectral decomposition of $\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 2\end{array}\right]$
13. Define g-inverse . Find g-inverse of $\mathrm{A}=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$.
14. Classify the following the quardratic form positive definite, positive semi definite and indefinite $12 x^{2}+2 y^{2}+6 z^{2}-4 y z-4 z x+2 x y$.

Part-C

Answer any two questions. Each question carries 5 weightage.
15. (a) State and prove rank nullity theorem.
(b) Reduce the matrix in to normal form and find rank. $A=\left[\begin{array}{cccc}2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2\end{array}\right]$.
16. (a) Explain spectral decomposition of a matrix.
(b) Find spectral decomposition of the matrix $\mathrm{A}=\left[\begin{array}{ll}7 & 2 \\ 2 & 4\end{array}\right]$.
17. (a) State and prove necessary and sufficient condition for the diagonalizability of a square matrix.
(b) If A is a hermitian matrix, show that A is unitarily similar to a diagonal matrix.
18. (a) State and prove the necessary and sufficient condition that a real quadratic form $X^{\prime} A X$ is positive definite.
(b) Classify the quadratic form $x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{2} x_{3}+2 x_{3} x_{1}-4 x_{1} x_{2}$.

