22P155

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MST1 C02 / CC22P MST1 C02 - ANALYTICAL TOOLS FOR STATISTICS - II

(Statistics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part-A

Answer any four questions. Each question carries 2 weightage.

1. Let V be a finite dimensional vectorspace and let $(v_1, v_2, ..., v_n)$ be any basis. Show that

(i) If a set has more than n vectors; then it is linearly dependent.

(ii) If a set has fewer than n vectors; it does not span V

- 2. if W_1 and W_2 are finite subspace of a vectorspace V then prove that $d(W_1 \cap W_2) = r + m + n$,
- 3. Define skew hermitian matrix and its properties.
- 4. Reduce the following matrix in to normal form and find its rank

	1	1	2]
A =	1	2	3
	0	1	-1

- 5. Define characteristic and minimal polynomial. Show that minimal polynomial of a matrix A exists and it is unique.
- 6. State and prove the necessary and sufficient condition for a system Ax = B is consistant.
- 7. Prove that every quadratic form can be reduced to a form containing square terms by a non-singular linear transformation.

$(4 \times 2 = 8$ Weightage)

Part-B

Answer any **four** questions. Each question carries 3 weightage.

- 8. Write a short note on Gram- Schmidt orthogonalization process.
- 9. Define orthogonal matrix. Let A be an arbitrary 2 x 2 (real) orthogonal matrix, prove : If (a, b) is the first row of A, then $a^{2+}b^{2}=1$ and $A=\begin{bmatrix}a&b\\-b&a\end{bmatrix}$ or $A=\begin{bmatrix}a&b\\b&-a\end{bmatrix}$.

10. Find rank and basis of the row space of the following matrix

A =	$\lceil 1 \rceil$	3	1	-2	-3
	1	4	3	-1	-4
	2	3	-4	-7	$\begin{bmatrix} -3 \\ -4 \\ -3 \\ -8 \end{bmatrix}$
	3	8	1	-7	-8

- 11. Show that geometric multiplicity of a characteristic root cannot exceed algebraic multiplicity of the same.
- 12. Find the spectral decomposition of $\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ 13. Define g-inverse . Find g-inverse of A= $\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$.
- 14. Classify the following the quardratic form positive definite, positive semi definite and indefinite $12x^2 + 2y^2 + 6z^2 - 4yz - 4zx + 2xy.$

$(4 \times 3 = 12 \text{ Weightage})$

Part-C

Answer any two questions. Each question carries 5 weightage.

- 15. (a) State and prove rank nullity theorem.
 - (b) Reduce the matrix in to normal form and find rank. $A = \begin{vmatrix} 2 & -2 & 0 & 0 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{vmatrix}$.
- 16. (a) Explain spectral decomposition of a matrix.
 - (b) Find spectral decomposition of the matrix $A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix}$.
- 17. (a) State and prove necessary and sufficient condition for the diagonalizability of a square matrix.
 - (b) If A is a hermitian matrix, show that A is unitarily similar to a diagonal matrix.
- (a) State and prove the necessary and sufficient condition that a real quadratic form X'AX is positive definite.
 - (b) Classify the quadratic form $x_1^2 + 4x_2^2 + x_3^2 4x_2x_3 + 2x_3x_1 4x_1x_2$.

 $(2 \times 5 = 10 \text{ Weightage})$
