\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022 (CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY1 C02 - MATHEMATICAL PHYSICS - I

(Physics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Section A

Answer all questions. Each question carries 1 weightage.

1. What are the characteristics of orthogonal curvilinear coordinates?
2. Express Laplacian operator in cylindrical coordinates
3. Show that eigen values of a Hermitian matrix are real and eigen vectors belonging to different eigen values are orthogonal.
4. What do you mean by symmetric tensors and anti-symmetric tensors?
5. Define Hermitian operator. Write any two properties of Hermitian operator.
6. Define Legendre's Polynomial and Show that $P_{0}(x)=1$
7. Show that Fourier series for an odd function consists of sine terms alone.
8. Define Fourier transform of a function.

$$
(8 \times 1=8 \text { Weightage })
$$

Section B

Answer any two questions. Each question carries 5 weightage.
9. Derive the expression for gradient, divergence and curl in general curvilinear co-ordinate system.Use the result to find the expressions for the same in spherical polar co-ordinates.
10. Obtain the series solution of Bessel's differential equation. Explain the limitation of the method.
11. Derive Trigonometric Expansion Involving Bessel Function. Prove That $J_{n}(x)$ is the coefficient of z^{n} in the expansion of $e^{\frac{x}{2}\left(z-\frac{1}{z}\right)}$
12. (a) Derive the generating function of Hermite Polynomial.
(b) Derive Rodrigues formula of Hermite Polynomial.

Section C

Answer any four questions. Each question carries 3 weightage.
13. A rigid body is rotating about a fixed axis with a constant angular velocity $\vec{\omega}$. Take ω to lie along the z axis. Express \vec{r} in circular cylindrical coordinates and using circular cylindrical coordinates calculate
a) $\vec{v}=\vec{\omega} \times \vec{r}$
b) $\nabla \mathrm{x} \vec{v}$
c) $\nabla \cdot \vec{r}$
d) $\nabla \mathrm{x} \vec{r}$
14. Using Gram-Schmidt orthogonalisation process, form an orthonormal set from the set of functions $u_{n}(x)=x^{n}, n=0,1,2, \ldots$ in the interval $-1 \leq x \leq 1$ with the density functions $w(x)=1$.
15. Find the eigen values and eigen vectors of the matrix

$$
\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

16. Prove that $\Gamma(\mathrm{x}) \Gamma(1-\mathrm{x})=\frac{\pi}{\sin x \pi}$
17. Show That $\int_{0}^{\infty} \sin ^{p} \theta \cos ^{q} \theta d \theta=\frac{T\left(\frac{P+1}{2}\right) r\left(\frac{q+1}{2}\right)}{2 \Gamma\left(\frac{P+q+2}{2}\right)}$.

Hence evaluate $\int_{0}^{\infty} \sin ^{p} \theta d \theta$ and $\int_{0}^{\infty} \cos ^{q} \theta d \theta$.
18. Obtain Fourier sine and cosine integrals.
19. Using partial fraction expansion, find $L^{L^{-1}\left[\frac{s+1}{s^{2}\left(s^{2}+a\right)}\right]}$

