22P107

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY1 C02 - MATHEMATICAL PHYSICS - I

(Physics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Section A

Answer *all* questions. Each question carries 1 weightage.

- 1. What are the characteristics of orthogonal curvilinear coordinates?
- 2. Express Laplacian operator in cylindrical coordinates
- 3. Show that eigen values of a Hermitian matrix are real and eigen vectors belonging to different eigen values are orthogonal.
- 4. What do you mean by symmetric tensors and anti-symmetric tensors?
- 5. Define Hermitian operator. Write any two properties of Hermitian operator.
- 6. Define Legendre's Polynomial and Show that $P_0(x) = 1$
- 7. Show that Fourier series for an odd function consists of sine terms alone.
- 8. Define Fourier transform of a function.

 $(8 \times 1 = 8$ Weightage)

Section B

Answer any *two* questions. Each question carries 5 weightage.

- 9. Derive the expression for gradient, divergence and curl in general curvilinear co-ordinate system. Use the result to find the expressions for the same in spherical polar co-ordinates.
- 10. Obtain the series solution of Bessel's differential equation. Explain the limitation of the method.
- 11. Derive Trigonometric Expansion Involving Bessel Function. Prove That $J_n(x)$ is the coefficient of z^n in the expansion of $e^{\frac{x}{2}(z-\frac{1}{z})}$
- 12. (a) Derive the generating function of Hermite Polynomial.(b) Derive Rodrigues formula of Hermite Polynomial.

$(2 \times 5 = 10 \text{ Weightage})$

Section C

Answer any *four* questions. Each question carries 3 weightage.

- 13. A rigid body is rotating about a fixed axis with a constant angular velocity $\overrightarrow{\omega}$. Take ω to lie along the z axis. Express \overrightarrow{r} in circular cylindrical coordinates and using circular cylindrical coordinates calculate a) $\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$ b) $\nabla \times \overrightarrow{v}$ c) $\nabla \cdot \overrightarrow{r}$ d) $\nabla \times \overrightarrow{r}$
- 14. Using Gram-Schmidt orthogonalisation process, form an orthonormal set from the set of functions $u_n(x) = x^n$, n = 0, 1, 2, ... in the interval $-1 \le x \le 1$ with the density functions w(x) = 1.
- 15. Find the eigen values and eigen vectors of the matrix

$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

- 16. Prove that $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin x\pi}$
- 17. $\int_{0}^{\infty} \sin^{p}\theta \cos^{q}\theta \, d\theta = \frac{r\left(\frac{P+1}{2}\right)r\left(\frac{q+1}{2}\right)}{2r\left(\frac{P+q+2}{2}\right)}.$ Hence evaluate $\int_{0}^{\infty} \sin^{p}\theta \, d\theta$ and $\int_{0}^{\infty} \cos^{q}\theta \, d\theta$.
- 18. Obtain Fourier sine and cosine integrals.
- 19. Using partial fraction expansion, find $L^{-1}\left[\frac{s+1}{s^2(s^2+a)}\right]$

 $(4 \times 3 = 12 \text{ Weightage})$
