22P108

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P PHY1 C03 - ELECTRODYNAMICS AND PLASMA PHYSICS

(Physics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Section A

Answer *all* questions. Each question carries 1 weightage.

- 1. What is displacement current?
- 2. Give the electromagnetic boundary conditions for an interface between two lossless linear media.
- 3. Write down the Maxwell's equations expressed in terms of phasors for a linear, isotropic and homogenous medium.
- 4. Define group velocity. Explain the case in which the group velocity is different from the phase velocity.
- 5. What is the input impedance of a short-circuited loss-less transmission line if the length of the line is (a) $\lambda/2$ (b) $\lambda/4$
- 6. Why is the TE_{10} mode in a rectangular waveguide is of particular practical importance?
- 7. What are the conditions for an ionized gas to become Plasma?
- 8. Explain why the group velocity for a plasma oscillation is zero.

$(8 \times 1 = 8$ Weightage)

Section **B**

Answer any *two* questions. Each question carries 5 weightage.

- 9. Derive the non-homogenous wave equation for vector potential and then, obtain the retarded vector potential as a solution to this wave equation.
- 10. Give the boundary conditions for electromagnetic fields across a conducting boundary. Analyse the normal reflection of plane waves from a conducting boundary.
- 11. Obtain the time-harmonic transmission line equations. Discuss the wave characteristics on an infinite transmission line and hence analyse the cases of loss-less line, low-loss line and distortion-less line.
- 12. Show explicitly how the relativistic formulation of electrodynamics includes all four Maxwell's equations.

$(2 \times 5 = 10 \text{ Weightage})$

Section C

Answer any *four* questions. Each question carries 3 weightage.

- 13. A circular ring in the x-y plane (radius R, centered at the origin) carries a uniform line charge λ . Find the first three terms (n = 0,1,2) in the multipole expansion for V(r, θ).
- 14. Use Maxwell's equations to show that for a harmonic wave propagating in a simple medium, the electric field and magnetic field are perpendicular to the direction of propagation of wave and both of these fields are perpendicular to each other.
- 15. Deduce the law of reflection and Snell's law by considering the incidence of electromagnetic waves on a plane dielectric boundary.
- 16. A distortion-less line has $Z_0 = 60\Omega$, $\alpha = 20mNp/m$, u = 0.6c where c is the speed of light in vacuum. Find R, L, G and C.
- 17. A point charge q is at rest at the origin of a coordinate system S_0 . What is the electric field of this charge in a system S moving along the positive x-axis with a speed v_0 relative to S_0 ?
- Compute the Larmor radius and cyclotron frequency for a 10keV electron in the earth's magnetic field of strength 5 x 10⁻⁵ T. Assume the v_{parallel} to be neglible.
- ¹⁹. Compute number of particles and Debye length in Debye sphere for $n = 10^{19} \text{ m}^3$.

 $(4 \times 3 = 12 \text{ Weightage})$