21P327		(Pages:	(Pages: 3) Na		
	THIRD SEMESTI	ER M.A DEGREE EX	Reg XAMINATION, NOV	g. No:	
		(CBCSS	*		
	001	(Regular/Supplement	• •	7	
	CCI	PP ECO3 CII - BASI (Econon	IC ECONOMETRICS		
		(2019 Admission			
Time:	3 Hours	.		mum: 30 Weightage	
	Answer a	Part . July questions Fach que	A stion carries 1/5 weigh	tage	
1.	The dependent variab	-		uge.	
	(a) Non-stochastic	(b) Known values	(c) Constant	(d) Stochastic	
2.		thodology of Econome	` ,		
	(a) Estimation Stage (b) Specification Stage				
	(c) Evaluation Stage		(d) None of the above		
3.	An estimator is unbiased if				
	(a) Its expected value is the true value of the parameter.				
	(b) Its expected value is not the true value of the parameter.				
	(c) Its unexpected value is the true value of the parameter				
	(d) None of the above				
4.	Accepting a false hyp	oothesis results in			
	(a) Type I error	(b) Type II error	(c) Confidence value	(d) Confidence limit	
5.	The adjusted R ² lies between				
	(a) - ∞ and + ∞	(b) -1 and $+1$	(c) 0 and 1	(d) -1 and 0	
6.	A hypothesis such as H_0 : $\beta_2 = \beta_3 = 0$, can be tested using				
	(a) t-test	(b) Chi-square test	(c) ANOVA test	(d) F-test	
7.	Multicollinearity can be detected if the regression function has				
	(a) Higher R ² with all co-efficients having high t ratios				
	(b) May not have R ² but all co-efficients having high t ratios				
	(c) High R ² with very few or no co-efficient having high t ratios				
	(d) Low R ² with almost all co-efficients having low t ratios				
8.	Heteroscedasticity is more likely a problem of				
	(a) Cross-sectional da	ata	(b) Time series data		

(c) Pooled data

(1) Turn Over

(d) All of the above

9.	For a regression through the origin, the intercept is equal to						
	(a) 0	(b) 2	(c) 1	(d) -1			
10.	10. In a semi-log model of type log $Yi = \beta Xi$ the co-efficient β stands for the						
	(a) Slope		(b) Elasticity				
	(c) Slope and Elasticity		(d) Growth rate				
11.	ANCOVA models include regressors that are						
	(a) Only quantitative variables						
	(b) Only qualitative variables						
	(c) Only categorical varia	ables					
	(d) Both qualitative and quantitative variables						
12. The process of removing the seasonal component from a time series sample data is known as							
	(a) Seasonalization		(b) Seasonality				
	(c) Deseasonalization		(d) Seasonal trend testing				
13.	13. Which of the following is used to detect specification errors?						
	(a) The Park test		(b) Chow test				
	(c) Ramsey's RESET tes	t	(d) The Runs test.				
14.	A data point that is dispr	oportionately distant fi	rom the bulk of the val	ues of a regressor(s) is			
	(a) Leverage point	(b) Outlier	(c) Influence point	(d) Missing data			
15.	In linear probability mod	lel, the					
	(a) regressand is dichoto	mous	(b) regressand is ordi	inal variable			
	(c) regressor is dichotomous		(d) regressors is ordinal variable				
			(1	$5 \times 1/5 = 3$ Weightage)			
		Part B (Very Short A	nswer Questions)				
	Answer an	y five questions. Each	question carries 1 weig	ghtage.			
16.	Give an example of an ed	conometric model.					
17.	Define stochastic error to	erm.					
18.	Explain the assumption of	of multicollinearity in 1	regression model				
19.	Distinguish between null	hypothesis and altern	ative hypothesis				
20.	Define partial regression	coefficients.					
21.	What is Run's test?						
22.	Define deseasonalization	ı .					
23.	Write a note on RESET.						

21P327

Part C (Short Answer Questions)

Answer any *seven* questions. Each question carries 2 weightage.

- 24. Explain the different steps involved in the methodology of econometric analysis.
- 25. Explain the coefficient of determination of two variable regression models.
- 26. Explain the maximum likelihood method of estimation.
- 27. Bring out the relation between R^2 and adjusted R^2 .
- 28. Explain the analysis of variance approach to testing the overall significance of an observed multiple regression.
- 29. Explain the matrix approach to k-variable regression models.
- 30. Explain the methods of detection and remedial measures of multicollinearity problem.
- 31. Explain regression through origin
- 32. Explain the lin-log model of regression analysis
- 33. How can we detect the presence of different types of model specification errors in econometric analysis?

 $(7 \times 2 = 14 \text{ Weightage})$

Part D (Essay questions)

Answer any **two** questions. Each question carries 4 weightage.

- 34. Explain the BLUE properties of OLS estimators.
- 35. Define heteroscedasticity. Explain the causes, consequences, detection and remedial measures of heteroscedasticity.
- 36. Explain dummy variables and the applications of dummy variables.
- 37. Explain the qualitative response regression models.

 $(2 \times 4 = 8 \text{ Weightage})$

 $(5 \times 1 = 5 \text{ Weightage})$