\qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

 (CBCSS-PG)(Regular/Supplementary/Improvement)
CC19P MTH3 C11 - MULTIVARIABLE CALCULUS AND GEOMETRY
(Mathematics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Show that if $A=L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, then A is a uniformly continuous mapping of \mathbb{R}^{n} into \mathbb{R}^{m}.
2. Show that if I is the identity operator on \mathbb{R}^{n} then $\operatorname{det}(I)=1$.
3. Show that any reparametrization of a regular curve is regular.
4. Show that if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function then its graph $\left\{(x, y, z) \in \mathbb{R}^{3}: z=f(x, y)\right\}$ is a smooth surface with atlas consisting of the single surface patch $\sigma(u, v)=(u, v, f(u, v))$.
5. Let $f: S_{1} \rightarrow S_{2}$ be a diffeomorphism. If σ_{1} is an allowable surface patch on S_{1}, then show that $f \circ \sigma_{1}$ is an allowable surface patch on S_{2}.
6. Calculate the first fundamental form of $\sigma(u, v)=\left(u-v, u+v, u^{2}+v^{2}\right)$.
7. Show that $\left\|\sigma_{u} \times \sigma_{v}\right\|=\left(E G-F^{2}\right)^{\frac{1}{2}}$.
8. Let κ, κ_{n} and κ_{g} be the curvature, normal curvature and geodesic curvature, respectively, of a unit-speed curve γ on an oriented surface S. Show that $\kappa^{2}=\kappa_{n}^{2}+\kappa_{g}^{2}$.
($8 \times 1=8$ Weightage)

PART B

Two questions should be answered from each unit. Each question carries 2 weightage.

UNIT I

9. Show that a linear operator A on a finite-dimensional vector space X is one-to-one if and only if it is onto.
10. Show that the set of all invertible linear operators on \mathbb{R}^{n} is an open subset of $L\left(\mathbb{R}^{n}\right)$.
11. State and prove the contraction principle.

UNIT II
12. Show that any regular curve has a unit-speed reparametrization.
13. Find the curvature of the curve $\gamma(t)=\left(\frac{4}{5} \cos t, 1-\sin t,-\frac{3}{5} \cos t\right)$
14. Show that the total signed curvature of a closed plane curve is an integer multiple of 2π.

UNIT III

15. Show that the transition maps of a smooth surface are smooth.
16. Compute the second fundamental form of $\sigma(u, v)=(\cos u, \sin u, v)$.
17. Show that the Gaussian curvature of a ruled surface is negative or zero.
$(6 \times 2=12$ Weightage)

PART C

Answer any two questions. Each question carries 5 weightage.
18. Suppose f maps an open set $E \subset \mathbb{R}^{n}$ into \mathbb{R}^{m}. Show that $f \in \mathcal{C}^{\prime}(E)$ if and only if the partial derivatives $D_{j} f_{i}$ exists and are continuous on E for $1 \leq i \leq m .1 \leq j \leq n$.
19. State and prove the inverse function theorem.
20. Let $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ be a unit-speed curve, let $s_{0} \in(\alpha, \beta)$ and let φ_{0} be such that $\dot{\gamma}\left(s_{0}\right)=\left(\cos \varphi_{0}, \sin \varphi_{0}\right)$. Show that there is a unique smooth function $\varphi:(\alpha, \beta) \rightarrow \mathbb{R}$ such that $\varphi\left(s_{0}\right)=\varphi_{0}$ and $\dot{\gamma}(s)=(\cos \varphi(s), \sin \varphi(s))$ for all $s \in(\alpha, \beta)$.
21. i) If $p \in S$ is an umbilic, then show that every tangent vector of S at p is a principal vector.
ii) Let S be a (connected) surface of which every point is an umbilic. Show that S is an open subset of a plane or a sphere.
($2 \times 5=10$ Weightage)

