\qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - PG)
(Regular/Supplementary/Improvement)

CC19P MTH3 C12-COMPLEX ANALYSIS

(Mathematics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part A

Answer any all questions. Each question carries 1 weightage.

1. Consider the stereographic projection between \mathbb{C}_{∞} and $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$. Let $z=x+i y \in \mathbb{C}$ and $Z=\left(x_{1}, x_{2}, x_{3}\right)$ be the corresponding point of S . Express $Z=\left(x_{1}, x_{2}, x_{3}\right)$ in terms of z.
2. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a^{n} z^{n} ; a \in \mathbb{C}$.
3. State and prove symmetry principle.
4. Evaluate $\int_{\gamma} \frac{d z}{z-a}$ where $\gamma(t)=a+r e^{i t}, 0 \leq t \leq 2 \pi$.
5. State and prove fundamental theorem of algebra.
6. Prove that $f(z)=\frac{\sin z}{z}$ has a removable singularity at $z=0$. Define $f(0)$ so that f is analytic at $z=0$.
7. For $|a|<1$, let $\varphi_{a}(z)=\frac{z-a}{1-\bar{a} z}$. Prove that the inverse of φ_{a} is φ_{-a}.
8. Hadamard three cycle theorem.

$$
(8 \times 1=8 \text { Weightage })
$$

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

9. If G is open and connected and $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0, \forall z \in G$, prove that f is constant.
10. If $T z=\frac{a z+b}{c z+d}$, find z_{2}, z_{3}, z_{4} in terms of a, b, c, d such that $T z=\left(z, z_{2}, z_{3}, z_{4}\right)$.
11. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ is a rectifiable path and $\varphi:[c, d] \rightarrow[a, b]$ is a continuous non-decreasing function with $\varphi(c)=a$ and $\varphi(d)=b$. Prove that for any function f continuous on $\{\gamma\}, \int_{\gamma} f=\int_{\gamma \circ \varphi} f$.

UNIT - II

12. Let f be analytic in $B(a ; R)$. Prove that $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ for $|z-a|<R$ where $a_{n}=\frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence greater than or equal to \boldsymbol{R}.
13. Let G be a region and $f: G \rightarrow \mathbb{C}$ be a continuous function such that $\int_{\gamma} f=0$ for every triangular path T in G. Prove that f is analytic in G.
14. Prove that if G is simply connected and $f: G \rightarrow \mathbb{C}$ is analytic in G , then f has a primitive in G .

UNIT - III

15. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x$.
16. State and prove argument principle.
17. State and prove maximum modulus principle (any version).

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. Let u and v be real valued functions defined on a region G and suppose that u and v have continuous partial derivatives. Prove that $f: G \rightarrow \mathbb{C}$ defined by $f(z)=u+i v$ is analytic iff u and v satisfy the Cauchy-Riemann equations.
19. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be four distinct points in \mathbb{C}_{∞}. Prove that $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is a real number iff all four points lie on a circle. Then prove that every Mobius transformation maps circles onto circles.
20. Let G be an open set and $f: G \rightarrow \mathbb{C}$ be a differentiable function. Prove that f is analytic on G .
21. Evaluate $\int_{0}^{\pi} \frac{d \theta}{(a+\cos \theta)^{2}}$ where $a>1$.

