21P302

(Pages: 2)

Name: Reg.No:

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C12 - COMPLEX ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer any *all* questions. Each question carries 1 weightage.

- Consider the stereographic projection between C_∞ and S = {(x₁, x₂, x₃) ∈ R³ : x₁² + x₂² + x₃² = 1}. Let z = x + iy ∈ C and Z = (x₁, x₂, x₃) be the corresponding point of S. Express Z = (x₁, x₂, x₃) in terms of z.
- 2. Find the radius of convergence of the power series $\sum_{n=0}^{\infty}a^nz^n;\;a\in\mathbb{C}.$
- 3. State and prove symmetry principle.
- 4. Evaluate $\int_{\gamma} \frac{dz}{z-a}$ where $\gamma(t) = a + re^{it}, \ 0 \le t \le 2\pi.$
- 5. State and prove fundamental theorem of algebra.
- 6. Prove that $f(z) = \frac{\sin z}{z}$ has a removable singularity at z = 0. Define f(0) so that f is analytic at z = 0.
- 7. For |a| < 1, let $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$. Prove that the inverse of φ_a is φ_{-a} .
- 8. Hadamard three cycle theorem.

$(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

9. If G is open and connected and $f: G \to \mathbb{C}$ is differentiable with f'(z) = 0, $\forall z \in G$, prove that f is constant.

10. If
$$Tz = \frac{az+b}{cz+d}$$
, find z_2, z_3, z_4 in terms of a, b, c, d such that $Tz = (z, z_2, z_3, z_4)$.

11. Let $\gamma : [a, b] \to \mathbb{C}$ is a rectifiable path and $\varphi : [c, d] \to [a, b]$ is a continuous non-decreasing function with $\varphi(c) = a$ and $\varphi(d) = b$. Prove that for any function f continuous on $\{\gamma\}$, $\int_{\gamma} f = \int_{\gamma \cap C} f$.

UNIT - II

- ^{12.} Let *f* be analytic in B(a; R). Prove that $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R where $a_n = \frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence greater than or equal to **R**.
- ^{13.} Let G be a region and $f: G \to \mathbb{C}$ be a continuous function such that $\int_{\gamma} f = 0$ for every triangular path T in G. Prove that f is analytic in G.
- 14. Prove that if G is simply connected and $f: G \to \mathbb{C}$ is analytic in G, then f has a primitive in G.

UNIT - III

- 15. Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^4} dx$.
- 16. State and prove argument principle.
- 17. State and prove maximum modulus principle (any version).

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Let u and v be real valued functions defined on a region G and suppose that u and v have continuous partial derivatives. Prove that $f: G \to \mathbb{C}$ defined by f(z) = u + iv is analytic iff u and v satisfy the Cauchy-Riemann equations.
- 19. Let z_1, z_2, z_3, z_4 be four distinct points in \mathbb{C}_{∞} . Prove that (z_1, z_2, z_3, z_4) is a real number iff all four points lie on a circle. Then prove that every Mobius transformation maps circles onto circles.
- 20. Let G be an open set and $f: G \to \mathbb{C}$ be a differentiable function. Prove that f is analytic on G.

21. Evaluate
$$\int_0^{\pi} \frac{d\theta}{(a+\cos\theta)^2}$$
 where $a > 1$.

 $(2 \times 5 = 10 \text{ Weightage})$
