\qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2022
 (CBCSS - PG)

(Regular/Supplementary/Improvement)
CC19P MTH3 C13-FUNCTIONAL ANALYSIS
(Mathematics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part A

Answer any all questions. Each question carries 1 weightage.

1. Prove that any two cosets of a linear space are either disjoint or identical.
2. Prove that if f_{i} is a complete system in a Hilbert space H and $x \perp f_{i}$, then $x=0$.
3. Define projection of x in H onto L, where L is a closed subspace of H.
4. Show that for every closed subspace of $H, L \oplus L^{\perp}=H$
5. State Hahn-Banach Theorem. Show that for all $x_{1} \in X$, and for all $x_{2} \in X$ such that $x_{1} \neq x_{2}$ there exists $f \in X^{*}$ satisfying $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
6. Prove that for a bounded linear operator A if the image of a unit ball is precompact then the image of any ball is precompact
7. Define Norm convergence and strong convergence in $L(X)$.
8. If A and B are invertible opertaors then prove that $A B$ is ivertible and $(A B)^{-1}=B^{-1} A^{-1}$
($8 \times 1=8$ Weightage)

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

9. Let O be an openset then prove that $F=O^{c}$ closed. Also prove if F is closed set then F^{c} is open.
10. Let X_{0} be a closed subspace of X.. Verify X / X_{0} is a normed space together with the norm defined by $\|[x]\|=\inf _{y \in X_{0}}\|x-y\|$
11. Let E be a normed space. Prove that there exists a complete normed space E^{1} and a linear operator $T: E \rightarrow E^{1}$ such that $\|T x\|=\|x\|$ for all $x \in E$. Also prove image T is dense in E^{1}.

UNIT - II

12. State and prove Parallelogram law in Hilbert Space
13. State and Prove Bessel's inequality
14. Consider $f \in E^{\#}-\{0\}$. Then prove that
15. $\operatorname{codim} \operatorname{ker} f=1$
16. If $f, g \in E^{\#}-\{0\}$ and $\operatorname{ker} f=\operatorname{ker} g$, then prove that there exists $\lambda \neq 0$ such that $\lambda f=g$.

UNIT - III

15. Let $L \hookrightarrow X$ be a subspace of a normed space X and let $x \in X$ such that dist $(x, L)=d>0$. Then, prove that there exists $f \in X^{*}$ such that $\|f\|=1, f(L)=0$ and $f(x)=d$.
16. Prove that $K(X \rightarrow Y)$ is a closed linear subspace of $L(X \rightarrow Y)$.
17. If $A: X \rightarrow Y$ is compact then prove that $A^{*}: Y^{*} \rightarrow X^{*}$ is compact.

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. State and prove Holder's inequlaity for sequences
19. Show that the Hilbertspace is seperable if and only if there exist a complete orthonormal system $\left\{e_{i}\right\}_{i \geq 1}$
20. State and prove Riesz representation theorem.
21. Let X be a normed space and let Y be a complete normed space. Then prove that $L(X \rightarrow Y)$ is a Banach Space.

