Name: \qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2022

 (CBCSS-PG)(Regular/Supplementary/Improvement) CC19P MTH3 C14-PDE AND INTEGRAL EQUATIONS
(Mathematics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Differentiate between Semi Linear PDE and Quasi Linear PDE with example
2. Show that $u x+3 u y=0$ has a solution of the form $u(x, y)=f(a x+b y)$ for a proper choice of constants a, b. Find the constants.
3. Consider the equation $u x+u y=1$, with the initial condition $u(x, 0)=f(x)$. What are the projections of the characteristic curves on the (x, y) plane?
4. Show that the equation $u x x+6 u x y-16 u y y=0$ is hyperbolic
5. Let u be a function in $C^{2}(D)$ satisfying the mean value property at every point in D. Then prove that u is harmonic in D
6. Define Poisson equation and classify problems with Poisson equation based on its boundary condition.
7. Explain separable kernel with an example.
8. If $y^{\prime \prime}(x)=F(x)$ and y satisfies the initial condition $y(0)=y_{0}$ and $y^{\prime}(0)=y_{0}^{\prime}$ Show that $y(x)=\int_{0}^{x}(x-\xi) f(s) d \xi+y_{0}^{\prime} x+y_{0}$.

$$
(8 \times 1=8 \text { Weightage })
$$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT-1

9. Solve the equation. $u_{x}+u_{y}=2$ Subject to the initial condition $u(x, 0)=x^{2}$.
10. Prove that the type of a linear second order PDE in two variables is invariant under a change of co-ordinates.
11. Let $u(x, t)$ be a solution of the wave equation $u_{t t}-c^{2} u_{x x}=0$ which is defined in the whole plane. Assume that u is a constant on the line $x=2+c t$. Prove that $u_{t}+c u_{x}=0$.

UNIT-2

12. Prove the solution is unique for the following problem.

$$
\begin{gathered}
u_{t}-k u_{x x}=F(x, t), 0<x<L, t>0 \\
u(0, t)=a(t) \quad, \quad u(L, t)=b(t), t \geq 0 \\
u(x, 0)=f(x), \quad 0 \leq x \leq L
\end{gathered}
$$

13. State and prove the strong maximum principle.
14. Prove that a necessary condition for the existence of a solution to the Neumann problem is $\int_{\partial D} g(x(s), y(s)) \cdot d s=\int_{D} F(x, y) d x d y$ where $(x(s), y(s))$ is a parameterization of ∂D.

UNIT-3

15. Find the Resolvent kernel of the equation

$$
y(x)=1+\lambda \int_{0}^{1}(1-3 x \xi) y(\xi) d \xi
$$

16. Transform $y^{\prime \prime}+x y=1, y(0)=0, y(1)=1$ into an integral equation using green's function.
17. Prove that the eigen values of Fredholm equation with real symmetric kernel are all real.
$(6 \times 2=12$ Weightage $)$

PART C

Answer any two questions. Each question carries 5 weightage.
18. (a) Compute the function $u(x, y)$ satisfying the eikonal equation $u_{x}{ }^{2}+u_{y}{ }^{2}=n^{2}$ and the initial condition $u(x, 1)=n \sqrt{1+x^{2}}$ (n is a constant).
(b) Consider the Tricomi equation $u_{x x}+u_{y y}=0, x<0$. Find a mapping $q=q(x, y), r=r(x, y)$ that transforms the equation into its canonical form and present the equation in this coordinate system.
19. Solve the heat conducting problem.

$$
\begin{gathered}
u_{t}-u_{x x}=0,0<x<\pi, t>0 \\
u(0, t)=(\pi, t)=0, t \geq 0 \\
u(x, 0)=f(x)=\left\{\begin{array}{cc}
x & 0 \leq x \leq \pi / 2 \\
\pi-x & \pi / 2 \leq x \leq \pi
\end{array}\right.
\end{gathered}
$$

20. State and prove Mean value theorem using poisson formula.
21. Deduce the Neumann series for a Fredholm integral equation and express the resolvent kernel as its solution.
