22U206	(Pages: 2)	Name:
		Reg.No:

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U CHE2 C02 - PHYSICAL CHEMISTRY

(Chemistry - Complementary Course)

(2019 Admission onwards)

Time: 2.00 Hours Maximum: 60 Marks

Credit: 2

Part A (Short answer questions)

Answer all questions. Each question carries 2 marks.

- 1. The heat of reaction at constant volume for the reaction: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ is -88.5kJ at 298K. Calculate the heat of reaction at constant pressure.
- 2. Define entropy of vapourization. How is it related to enthalpy of vapourization?
- 3. How is Gibbs energy related to temperature and entropy?
- 4. Define most probable velocity of a gas.
- 5. State and explain Avogadro's law.
- 6. What are Weiss indices?
- 7. What is meant by a plane of symmetry?
- 8. Why do crystals diffract X-rays?
- 9. Define the term surface energy.
- 10. How does pressure affect the solubility of a gas in a given liquid?
- 11. What is meant by reverse osmosis?
- 12. What are fuel cells? Schematically depict H₂-O₂ fuel cell.

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer all questions. Each question carries 5 marks.

- 13. Discuss the physical significance of Gibbs energy.
- 14. Calculate the pressure exerted by 1 mole of a van der Waals' gas occupying a volume of 1.5 dm³ at 300 K ($R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$).
- 15. Distinguish between the terms intrinsic defects and extrinsic defects.

- 16. Derive the van't Hoff osmotic pressure equation.
- 17. Explain how the molecular mass of a non-volatile solute is determined by osmometry.
- 18. Explain the principle of conductometric titrations with a suitable examples. What are the advantages of the method?
- 19. Derive the Henderson's equation for an acidic buffer.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any *one* question. The question carries 10 marks.

- 20. (a) Discuss the significance of internal energy change.
 - (b) Calculate the change in internal energy produced when a gas expands isothermally against a constant extrenal pressure 1 atm from 10 dm³ to 20 dm³ if it absorbs 650 J of thermal energy from its sorrounding during the process.
- 21. (a) What is meant by single electrode potential? How is it measured?
 - (b) Calculate the e.m.f. at 25°C of the cell Zn(s)|Zn²⁺(0.1 M) ||A_g+(0.1 M)|Ag(s) given: E°Zn²⁺|Zn= -0.76 V ; E°A_g+|Ag=0.80V

 $(1 \times 10 = 10 \text{ Marks})$
