\qquad
\qquad
SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023
(CUCBCSS-UG)
CC15U MAT2 C02 - MATHEMATICS
(Mathematics - Complementary Course)
(2015 to 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 80 Marks

PART A

Answer all questions. Each question carries 1 mark.

1. If $\sinh x=-3 / 4$, then $\cosh x=\cdots$
2. Evaluate $\int 4 e^{x} \sinh x d x$
3. Evaluate $\int_{1}^{\infty} \frac{1}{x^{2}} d x$
4. Evaluate $\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)$
5. Discuss the convergence of the series $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots$
6. Show that $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ converges absolutely for all values of x .
7. Find a Maclaurin series for $f(x)=e^{x / 2}$
8. Graph the set of points whose polar coordinates satisfy the equation $0 \leq r \leq 1$
9. Replace the Cartesian equation $y=x$ by equivalent polar equation.
10. Identify the conic $r=\frac{4}{1+\sin \theta}$
11. Convert the cylindrical coordinates $\left(2, \frac{\pi}{3}, 1\right)$ into rectangular coordinates.
12. Find the domain of the function $f(x, y, z)=x y \ln z$

$$
\text { (12 × } 1 \text { = } 12 \text { Marks) }
$$

PART B

Answer any nine questions. Each question carries 2 marks.
13. Differentiate $f(x)=x \sinh x-\cosh x$ w.r.t x.
14. Show that $\operatorname{sech}^{-1} x=\cosh ^{-1}\left(\frac{1}{x}\right)$
15. Show that $\int_{-\infty}^{\infty} \frac{2 x}{1+x^{2}} d x$ is divergent
16. Evaluate $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}$
17. Find the sum of the series $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots$
18. Discuss the convergence of $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$
19. Find the Taylor series generated by $f(x)=\sin x$ at $x=\frac{\pi}{2}$.
20. Identify the graph of $r \sin \theta=-1$
21. Show that $\left(\frac{1}{3}, \frac{3 \pi}{2}\right)$ lies on the curve $r=-\sin \left(\frac{\theta}{3}\right)$
22. Find a cartesian equation for the surface $\rho=\cos \varphi$
23. Show that the function $f(x, y)=\frac{x^{4}-y^{2}}{x^{4}+y^{2}}$ has no limit as $(x, y) \rightarrow(0,0)$.
24. Find the linearization of $f(x, y)=x^{2}+y^{2}+1$ at the point $(1,1)$.

PART C

Answer any six questions. Each question carries 5 marks.
25 . Find the volume of the solid generated by revolving the region bounded by the curve $y=x^{2}$ and the lines $y=0, x=2$ about the x-axis.
26. Find the length of $x=\frac{y^{3}}{3}+\frac{1}{4 y}$ from $y=1$ to $y=3$.
27. Discuss the convergence of $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$
28. Show that $\left\{(-1)^{n+1} \frac{n-1}{n}\right\}$ diverges.
29. Discuss the convergence of $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!}$
30. For what values of x does the series $\sum_{n=1}^{\infty} n!x^{n}$ converges?
31. Find the area of the Lemniscate of Bernouilli $r^{2}=\cos 2 \theta$
32. Show that the function $f(x, y)=\left\{\begin{array}{cl}\frac{2 x^{2} y}{x^{4}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$ is continuous at every point except at the origin.
33. Verify that $\frac{\partial^{2} w}{\partial y \partial x}=\frac{\partial^{2} w}{\partial x \partial y}$, when $w=x^{y}+\sin (x y)$

$$
\text { (6 } \times 5=30 \text { Marks })
$$

PART D

Answer any two questions. Each question carries 10 marks.
34. Find the area of the surface generated by revolving the curve $x=2 \sqrt{4-y}, 0 \leq y \leq \frac{15}{4}$, about the y-axis.
35. Discuss the converges of
(a) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}$
36. Find the length of the region that lies inside the circle $r=1$ and outside the cardioid $r=1-\cos \theta$.

