\qquad
\qquad

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC19U MTS2 B02 / CC20U MTS2 B02 - CALCULUS OF SINGLE VARIABLE - I

(Mathematics - Core Course)
(2019 Admission onwards)
Time : 2.5 Hours

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Find the function of the transformed graph if
(a) $f(x)=x^{2}+x-1$: shifted vertically upward by 3 units.
(b) $f(x)=x^{2}-4$: shifted horizontally to left by 2 units.
2. Evaluate $\lim _{x \rightarrow 0} \frac{\tan 2 x}{3 x}$.
3. What is a jump discontinuity? Give an example for it.
4. Find the rate of change of $y=\sqrt{2 x}$ with respect to x at $x=2$.
5. Find the rate of change of $y=2 x^{3}+2$ with respect to x at $x=2$.
6. The position of a particle moving along a straight line is given by $s(t)=\frac{t}{t+1}, t \geq 0$ where t is measured in seconds and s in feet. Find the position, velocity and speed of the particle at $t=0$
7. The total cost incurred in operating an oil tanker on an 800 mi run, traveling at an average speed of $\nu \mathrm{mph}$, is estimated to be $C(\nu)=\frac{1,000,000}{\nu}+200 \nu^{2}$ dollars. Find the approximate change in the total operating cost if the average speed is increased from 10 mph to 10.5 mph
8. Find the linearization of $f(x)=\sqrt{2 x+3}$ at $a=3$
9. Using Mean value theorem verify the function $\mathrm{f}(\mathrm{x})=\sin \mathrm{x} ;[0, \pi / 2]$ and find c .
10. Find the interval on which $f(x)=x \sin x+\cos x, 0<x<2 \pi$ is increasing or decreasing.
11. Define limit of a function at infinity.
12. Define horizontal asymptote.
13. A car is moving along a straight road with velocity function $V(t)=2 t^{2}+t-6 ; 0 \leq t \leq 8$, where $V(t)$ is measured in feet per second. Find the displacement of the car between $\mathrm{t}=0$ and $\mathrm{t}=3$.
14. Define a smooth function and a smooth curve.
15. Find the work done by a variable force $F(x)=\frac{1}{x^{2}} \mathrm{~N}$ along the x-axis from $x=1 \mathrm{~m}$ to $x=10 \mathrm{~m}$
(Ceiling: 25 Marks)

Part B (Paragraph questions)

Answer all questions. Each question carries 5 marks.
16. Let $f(x)=\frac{1}{x+1}$ and $g(x)=\frac{x}{x+1}$. Find $f+g, f-g, f g, f / g$.
17. Let $\lim _{x \rightarrow 3} 2 x^{2}=18$ and $\epsilon=0.1$.Find a number $\delta>0$ such that $|f(x)-18|<\epsilon$ whenever $0<|x-3|<\delta$.
18. (a) Explain the Extreme value theorem
(b) Describe a procedure for finding the extrema of a continuous function f on a closed interval $[\mathrm{a}, \mathrm{b}]$.
19. Using the definition of area, find the area of the region under the graph of $f(x)=2 x+1$ on [0, 2] by choosing C_{k} as the left end point.
20. Compute the Riemann sum for $f(x)=4-x^{2}$ on $[-1,3]$ using the five subintervals $(\mathrm{n}=5)$ and choosing the evaluvation points to be the mid point of the subintervals.
21. Find the volume of the solid obtained by revolving the region under the graph of $y=\sqrt{x}$ on $[0,2]$ about the x-axis
22. Find the area of the surface obtained by revolving the graph of $y=x^{1 / 3}$ on the interval $[1,8]$ about the y -axis
23. Find the center of mass of a system comprising three particles with masses 2 , 4 , and 1 grams, located at the points $(-2,2),(2,1)$ and $(3,-1)$ respectively. (Assume that all distances are measured in centimeters)
(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any two questions. Each question carries 10 marks.
24. (a) Discuss on Second derivative test.
(b) State and prove the second derivative test.
(c) Find the relative extrema of $f(x)=x^{3}-3 x^{2}-24 x+32$ using the second derivative test.
25. Sketch the graph of the function $f(x)=2 x^{3}-3 x^{2}-12 x+12$.
26. State and prove both Part 1 and Part 2 of Fundamental Theorem of Calculus.
27. Find the area of the region bounded by the graphs of $y=2 x+4$ and $y=x^{3}$ and the horizontal line $x=0$ using integration (i) with respect to x (ii) with respect to y
($2 \times 10=20$ Marks)

