\qquad
Reg. No: \qquad
FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023
(CUCBCSS-UG)

CC15U MAT4 C04 - MATHEMATICS - IV

(Mathematics - Complementary Course)
(2015 to 2018 Admissions - Supplementary/Improvement)
Time: Three Hours
Maximum: 80 Marks

PART - A

Answer all questions. Each question carries 1 mark.

1. Check whether the functions $\cos x$ and $\sin x$ are independent or not.
2. Find the general solution of $y^{\prime \prime}-y=0$.
3. Write the characteristic equation of $x^{2} y^{\prime \prime}+3 x y^{\prime}+7 y=0$.
4. Find the Wronskian of the solutions e^{x} and $x e^{x}$.
5. $\mathcal{L}(\sinh a t)=\cdots$
6. $\mathcal{L}^{-1}\left(\frac{1}{s^{3}}\right)=\cdots$
7. Give an example for a periodic function with its fundamental period.
8. Find a_{0} for representing the function $f(x)=x$ as a Fourier series in the interval $[-\pi, \pi]$.
9. Prove that the function $f(x)=x \sin x$ is an even function.
10. Write the order and degree of the partial differential equation $\left(\frac{\partial u}{\partial x}\right)^{2}+\frac{\partial u}{\partial y}=0$.
11. Write the one-dimensional wave equation.
12. Write the formula for finding k in Runge - Kutta method.
($12 \times 1=12$ Marks $)$

PART - B

Answer any nine questions. Each question carries 2 marks.
13. Solve $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
14. Apply the differential operator $(D+5)^{2}$ to the function $y=5 x+\sin 5 x$.
15. Give the form of choice of y_{p} for solving the differential equation $y^{\prime \prime}+2 y^{\prime}-35 y=$ $5 e^{3 x}+2 \sin 5 x$.
16. Find the Laplace transform of the function $3 t+\cos 2 t$.
17. Find the inverse Laplace transform of $\frac{1}{(s+1)(s-1)}$.
18. State Second shifting theorem.
19. Find b_{n} for representing the function $f(x)=\left\{\begin{array}{cc}-k & \text { when }-\pi<x<0 \\ k & \text { when } 0<x<\pi\end{array}\right.$ as a Fourier series in the interval $(-\pi, \pi)$.
20. Write the general form of Fourier cosine series and Fourier sine series.
21. Verify that $u=e^{x} \cos y$ is a solution of the Two-dimensional Laplace equation.
22. Solve the partial differential equation $u_{y}=u$.
23. Using Picard's method find $y_{2}(x)$, for the initial value problem $y^{\prime}=x+y, y(0)=1$.
24. Apply Euler's method to solve the initial value problem $y^{\prime}=(y+x)^{2}, y(0)=0$ by computing y_{1} and y_{2} with $h=0.1$.

$$
(9 \times 2=18 \text { Marks })
$$

PART - C
Answer any six questions. Each question carries 5 marks.
25. Solve the initial value problem: $y^{\prime \prime}+4 y^{\prime}+4 y=0, y(0)=1, y^{\prime}(0)=1$.
26. Find the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$.
27. Find $\mathcal{L}(t \cos \omega t)$.
28. Find the inverse Laplace transform of $\frac{6 s-4}{s^{2}-4 s+20}$.
29. Using the method of convolution, find $\mathcal{L}^{-1}\left(\frac{1}{\left(s^{2}+1\right)^{2}}\right)$.
30. Obtain the Fourier series for $f(x)=\pi x$ in $[0,2]$.
31. Find the half range sine series of the function $f(x)=\pi-x, 0<x<\pi$.
32. Find the solution $u(x, y)$ of the partial differential equation $u_{x}=2 u_{y}+u$ by separating variables.
33. Find an upper bound for the error incurred in estimating the integral $\int_{0}^{\pi} x \sin x d x$ using Trapezoidal rule with $n=10$ steps.

$$
(6 \times 5=30 \text { Marks })
$$

PART-D

Answer any two questions. Each question carries 10 marks.
34. Solve the initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+5 y=1.25 e^{0.5 x}+40 \cos 4 x-55 \sin 4 x, y(0)=0.2, y^{\prime}(0)=60.1
$$

35. (i) Prove that $\mathcal{L}(\sin a t)=\frac{a}{s^{2}+a^{2}}$.
(ii) Solve the integral equation $y(t)=t+\int_{0}^{t} y(u) \sin (t-u) d u$.
36. Find the Fourier series representing $f(x)=x$ in the interval $[-\pi, \pi]$. Hence, deduce that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}$.
