\qquad
\qquad

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC19U MTS4 B04 / CC20U MTS4 B04-LINEAR ALGEBRA

(Mathematics - Core Course)
(2019 Admission onwards)
Time : 2.5 Hours
Maximum : 80 Marks
Credit : 4
Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Find all values of k for which the given augmented matrix corresponds to a consistent linear system $\left[\begin{array}{ccc}1 & k & -4 \\ 4 & 8 & 2\end{array}\right]$
2. When a homogeneous linear system posses infintely many solutions?
3. Solve $3 x-2 y=-1 ; 4 x+5 y=3$, by using matrix inversion.
4. Find the Values of λ for which $\operatorname{det}(A)=0$, when $A=\left[\begin{array}{cc}\lambda-1 & 0 \\ 2 & \lambda+1\end{array}\right]$
5. If A is a square matrix which has a row of zeros or a column of zeros then prove that $\operatorname{det} A=0$
6. If $u=(1,2,-1)$ and $v=(6,4,2)$, show that $w=(9,2,7)$ is a linear combination of u and v
7. Check whether $f(x)=x$ and $g(x)=\sin x$ are linearly independent or not.
8. Using plus-minus theorem show that $p_{1}=1-x^{2}, p_{2}=2-x^{2}$ and $p_{3}=x^{3}$ are linearly independent
9. Define Column space.
10. Use matrix multiplication to find the reflection of $(2,-5,3)$ about $x y$-plane
11. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $w_{1}=2 x_{1}+x_{2}$ and $w_{2}=3 x_{1}+4 x_{2}$. Check whether $T(1,1)=T(1,0)+T(0,1)$
12. Find the equation of the image of the line $y=2 x+1$ under the multiplication by matrix $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
13. Check whether $f(x)=x$ and $g(x)=x^{2}$ are orthogonal with respect to $\langle f, g\rangle=\int_{a}^{b} f(x) . g(x)$
14. Define an orthonormal set
15. When we say that the matrix B is orthogonally similar to A

Part B (Paragraph questions)

Answer all questions. Each question carries 5 marks.
16. Show that if a square matrix A satisfying the equation $A^{2}+2 A+I=0$, then A must be invertible.What is the inverse?
17. Let A and B are square matrices of the same size.If $A B$ is invertible then prove that A and B are invertible.
18. Let $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be multiplication by $A=\left[\begin{array}{ccc}-1 & 3 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & -3\end{array}\right]$ and let e_{1}, e_{2} and e_{3} be the standard basis vectors for \mathbb{R}^{3}. Find (a) $T_{A}\left(e_{1}\right), T_{A}\left(e_{2}\right), T_{A}\left(e_{3}\right) \quad$ (b) $T_{A}\left(e_{1}+e_{2}+e_{3}\right) \quad$ (c) $T_{A}\left(7 e_{3}\right)$
19. Given a basis $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ of \mathbb{R}^{3}, where $v_{1}=(1,2,1), v_{2}=(2,9,0), v_{3}=(3,3,4)$ find the coordinate vector of $V=(5,-1,9)$ relative to this basis
20. Consider the bases $B=\left\{u_{1}, u_{2}\right\}$ and $B^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$ where $u_{1}=(2,2), u_{2}=(4,-1), u_{1}^{\prime}=(1,3), u_{2}^{\prime}=(-1,1)$ find the transition matrix from B to B^{\prime}
21. Find the eigen values of $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8\end{array}\right]$
22. Show that $\langle f, g\rangle=\int_{a}^{b} f(x) . g(x)$ is an inner product space on $C[a, b]$
23. Show that $A=\left[\begin{array}{ccc}3 / 7 & 2 / 7 & 6 / 7 \\ -6 / 7 & 3 / 7 & 2 / 7 \\ 2 / 7 & 6 / 7 & -3 / 7\end{array}\right]$ is orthogonal and find its inverse.
(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any two questions. Each question carries 10 marks.
24. Solve the matrix equation for X, if $\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 3 & 0 \\ 0 & 2 & -1\end{array}\right] X=\left[\begin{array}{ccccc}2 & -1 & 5 & 7 & 8 \\ 4 & 0 & -3 & 0 & 1 \\ 3 & 5 & -7 & 2 & 1\end{array}\right]$
25. Show that the spaces R^{2} and R^{3} are vector spaces
26. a) State and prove Dimension Theorem
b) Verify Dimension Theorem for $A=\left[\begin{array}{ccccc}1 & -2 & 2 & 3 & -1 \\ -3 & 6 & -1 & 1 & -7 \\ 2 & -4 & 5 & 8 & -4\end{array}\right]$
27. Let A be an $n \times n$ matrix. Prove that A is diagonalizable if and only if A has n linearly independent vectors.

