\qquad
\qquad

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC19U MTS4 C04 / CC20U MTS4 C04 - MATHEMATICS - IV

(Mathematics - Complementary Course)
(2019 Admission onwards)
Time : 2.00 Hours
Maximum : 60 Marks
Credit : 3
Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Write the difference between explicit and implicit solutions.
2. Verify that $y=\frac{1}{\left(1+c e^{-x}\right)}$ is a one-parameter family of solutions of the first order differential equation $y^{\prime}=y-y^{2}$. Find a solution of the initial value problem $y^{\prime}=y-y^{2}, y(0)=\frac{-1}{3}$.
3. Define separable equations and give an example.
4. Define Bernoulli's equation.
5. Define $n^{\text {th }}$ - order homogeneous and non homogeneous differential equation.
6. Define elastic curve.
7. Find $\mathscr{L}\{f(t)\}$, if $f(t)= \begin{cases}0 & 0 \leq t<3 \\ 2 & t \geq 3\end{cases}$
8. Evaluate $\mathscr{L}^{-1}\left\{\frac{s}{(s+1)^{2}}\right\}$
9. Evaluate $\mathscr{L}\left(4 t * 3 t^{2}\right)$
10. Check whether the functions $f_{1}(x)=x^{2}$ and $f_{2}(x)=x^{3}$ defined on the interval $[-1,1]$ are orthogonal or not.
11. Check whether the partial differential equation $3 \frac{\partial^{2} u}{\partial x^{2}}+5 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$ is hyperbolic, parabolic or elliptic.
12. Write the one-dimensional wave equation.

Part B (Short essay questions - Paragraph)

Answer all questions. Each question carries 5 marks.
13. Solve the general solution of $\left(x^{2}-9\right) \frac{d y}{d x}+x y=0$.
14. Solve $\left(2 y^{2}+3 x\right) d x+(2 x y) d y=0$.
15. Solve the initial value problem $y^{\prime \prime}-4 y^{\prime}-5 y=0, y(1)=0, y^{\prime}(1)=2$.
16. Solve the initial value problem $x^{2} y^{\prime \prime}+x y^{\prime}+y=0, y(1)=1, y^{\prime}(1)=2$.
17. Evaluate $\mathscr{L}^{-1}\left(\frac{2 s-4}{\left(s^{2}+s\right)\left(s^{2}+1\right)}\right)$
18. If $f(t)$ is piecewise continuous on $[0, \infty)$ of exponential order and periodic with period T, prove that $\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t$
19. Expand the function $f(x)=\left\{\begin{array}{rll}\pi, & \text { if } & -1<x<0 \\ -\pi, & \text { if } & 0 \leq x<1\end{array}\right.$ in an appropriate cosine or sine series.
(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.
20. a) Solve the initial value problem $y^{\prime \prime}+y=4 x+10 \sin x, y(\Pi)=0, y^{\prime}(\Pi)=2$.
b) Solve $y^{\prime \prime}-6 y^{\prime}+9 y=6 x^{2}+2-12 e^{3 x}$.
21. Using Laplace transforms solve the initial value problem $y^{\prime \prime}+y=4 \delta(t-2 \pi)$ with $y(0)=1$ and $y^{\prime}(0)=0$ where $\delta(t-2 \pi)$ is the Dirac delta function.

$$
(1 \times 10=10 \text { Marks })
$$

