21U402

(Pages: 2)

Name:

Reg.No:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS4 C04 / CC20U MTS4 C04 - MATHEMATICS - IV

(Mathematics - Complementary Course)

(2019 Admission onwards)

Time: 2.00 Hours

Maximum : 60 Marks

Credit : 3

Part A (Short answer questions)

Answer *all* questions. Each question carries 2 marks.

- 1. Write the difference between explicit and implicit solutions.
- 2. Verify that $y = \frac{1}{(1 + ce^{-x})}$ is a one-parameter family of solutions of the first order differential equation $y' = y y^2$. Find a solution of the initial value problem $y' = y y^2$, $y(0) = \frac{-1}{3}$.
- 3. Define separable equations and give an example.
- 4. Define Bernoulli's equation.
- 5. Define n^{th} order homogeneous and non homogeneous differential equation.
- 6. Define elastic curve.

7. Find
$$\mathscr{L} \{ f(t) \}$$
, if $f(t) = \begin{cases} 0 & 0 \leq t < 3 \\ 2 & t \geq 3 \end{cases}$

- 8. Evaluate $\mathscr{L}^{-1}\left\{\frac{s}{(s+1)^2}\right\}$
- 9. Evaluate $\mathscr{L}(4t * 3t^2)$
- 10. Check whether the functions $f_1(x) = x^2$ and $f_2(x) = x^3$ defined on the interval [-1, 1] are orthogonal or not.
- ^{11.} Check whether the partial differential equation $3\frac{\partial^2 u}{\partial x^2} + 5\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$ is hyperbolic, parabolic or elliptic.
- 12. Write the one-dimensional wave equation.

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer *all* questions. Each question carries 5 marks.

13. Solve the general solution of $(x^2 - 9)\frac{dy}{dx} + xy = 0$.

- 14. Solve $(2y^2 + 3x)dx + (2xy)dy = 0$.
- 15. Solve the initial value problem $y^{''} 4y^{'} 5y = 0, y(1) = 0, y^{'}(1) = 2.$
- 16. Solve the initial value problem $x^2y^{''} + xy^{'} + y = 0, y(1) = 1, y^{'}(1) = 2.$
- 17. Evaluate $\mathscr{L}^{-1}\left(\frac{2s-4}{(s^2+s)(s^2+1)}\right)$
- 18. If f(t) is piecewise continuous on $[0, \infty)$ of exponential order and periodic with period *T*, prove that $\mathscr{L}\left\{f(t)\right\} = \frac{1}{1 e^{-sT}} \int_0^T e^{-st} f(t) dt$

19. Expand the function $f(x) = \begin{cases} \pi, & \text{if } -1 < x < 0 \\ -\pi, & \text{if } 0 \le x < 1 \end{cases}$ in an appropriate cosine or sine series.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.

- 20. a) Solve the initial value problem $y^{''} + y = 4x + 10sinx, y(\Pi) = 0, y^{'}(\Pi) = 2$. b) Solve $y^{''} - 6y^{'} + 9y = 6x^2 + 2 - 12e^{3x}$.
- 21. Using Laplace transforms solve the initial value problem $y'' + y = 4\delta(t 2\pi)$ with y(0) = 1 and y'(0) = 0 where $\delta(t 2\pi)$ is the Dirac delta function.

(1 × 10 = 10 Marks)
