\qquad
\qquad
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

> (CBCSS-UG)
(Regular/Supplementary/Improvement)
CC19U MTS6 B10 / CC20U MTS6 B10 - REAL ANALYSIS
(Mathematics - Core Course)
(2019, 2020 Admissions)

Time: $21 / 2$ Hours

Maximum: 80 Marks
Credit: 5

Section A

Answer all questions. Each question carries 2 marks.

1. Give an example for a continuous function on a set which has neither an absolute maximum nor an absolute minimum on the set.
2. State non uniform continuity criteria.
3. Show that $f(x)=\sin x$ is uniformly continuous on $[0, \infty)$.
4. Show that the equation $x=\cos x$ has a solution in $[0, \pi / 2]$.
5. Prove that a constant function is Riemann integrable.
6. Suppose that $f \in \mathcal{R}[a, b]$. Prove that $k f \in \mathcal{R}[a, b]$ where $k \in \mathbb{R}$.
7. Give an antiderivative of the Signum function in $[-5,8]$.
8. Evaluate $\int_{0}^{2} t^{2} \sqrt{1+t^{3}} d t$ and justify your steps.
9. Show that $f_{n}(x)=\frac{x}{n} ; x \in \mathbb{R}, n=1,2, \cdots$ is not uniformly convergent on \mathbb{R}.
10. Find uniform norm of a real valued function.
11. State Weierstrass M- test for series of functions.
12. Examine the convergence of $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$
13. Prove that Beta function is symmetric.
14. Find $\Gamma\left(\frac{1}{2}\right)$
15. Find $\int_{0}^{\frac{\pi}{2}} \sin ^{5 / 2} x \cos ^{3 / 2} x d x$
(Ceiling: 25 Marks)

Section B

Answer all questions. Each question carries 5 marks.
16. State and prove Boundedness theorem of continuous functions.
17. Prove that, if $f ;[0,1] \rightarrow[0,1]$ is a continuous function then $f(x)=x$ for atleast one x in $[0,1]$.
18. State and prove Squeeze Theorem.
19. Prove that every continuous function is Riemann integrable.
20. Test the uniform convergence of the sequence $\left\{e^{-n x}\right\}$ for $x \geq 0$.
21. Prove that if $\left(f_{n}\right)$ is a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that $\left(f_{n}\right)$ converges uniformly to a function $f: A \rightarrow \mathbb{R}$, then f is continuous on A.
22. Prove that if $p, q>0, B(p, q)=B(p+1, q)+B(p, q+1)$
23. Check the convergence of the improper integral $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$
(Ceiling: 35 Marks)

Section C

Answer any two questions. Each question carries 10 marks.
24. State and prove Location of Roots theorem and deduce Bolzano's intermediate value theorem.
25. State and prove Additivity theorem.
26. Let $\left(f_{n}\right)$ be a sequence of functions on $\mathcal{R}[a, b]$ and suppose that $\left(f_{n}\right)$ converges uniformly on $[a, b]$ to f. Then prove that $f \in \mathcal{R}[a, b]$.
27. (a) Find the relation connecting Beta function and Gamma function.
(b) Show that even though the improper integral $\int_{-1}^{5} \frac{d x}{(x-1)^{3}}$ does not converge, its Cauchy Principal Value exists.

