\qquad
\qquad

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC19U MTS6 B12 / CC20U MTS6 B12 - CALCULUS OF MULTI VARIABLE
 (Mathematics - Core Course)
 (2019, 2020 Admissions)

Time : 2.5 Hours
Maximum : 80 Marks
Credit: 4
Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Sketch a contour map for the surface described by $f(x, y)=x^{2}+y^{2}$, using the level curves corresponding to $k=0,1,4,9$ and 16 .
2. Find $f_{y x}$ and $f_{y y}$ if $f(x, y)=2 x y^{2}-3 x^{2}+x y^{3}$.
3. Find $\frac{d y}{d x}$ if $x^{3}-2 x y+y^{3}=4$.
4. Find the gradient of $f(x, y)=x \sin y+y \cos x$ at the point $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.
5. Let $f(x, y)=2 x^{2}+y^{2}-6 x+2 y+1$. Find the critical point of f.
6. Evaluate $\int_{0}^{1} \int_{0}^{2}(x+2 y) d y d x$
7. Evaluate $\iint_{R}(x+2 y) d y d x$, where $R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq x\}$.
8. Evaluate $\int_{0}^{2} \int_{0}^{1} \int_{0}^{3} x y z d z d y d x$.
9. Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{3} \int_{0}^{r} r d z d r d \theta$
10. Find the jacobian of the transformations T defined by the equations $x=u^{2}-v^{2}, y=2 u v$.
11. Find the gradient vector field of $f(x, y)=e^{-2 x} \sin 3 y$.
12. Determine whether the vector field $F(x, y)=\left(2 x^{2}+4 y\right) \hat{i}+\left(2 x-3 y^{2}\right) \hat{j}$ is conservative.
13. Give the statement of Green's Theorem.
14. Find a parametric equation of the plane $2 x+3 y+z=6$.
15. Give the statement of Stockes' Theorem.
(Ceiling: 25 Marks)
Part B (Paragraph questions)
Answer all questions. Each question carries 5 marks.
16. Find the area of that part of the plane $y+z=2$ inside the cylinder.
17. Suppose z is a differentiable function of x and y that is defined implicitly by $x^{2}+y^{3}-z+2 y z^{2}=5$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
18. Find equations of the tangent plane and normal line to the surface with equation $2 x^{2}-y^{2}+3 z^{2}=2$ at the point $(2,-3,1)$.
19. Find the volume of the solid that lies below the paraboloid $z=4-x^{2}-y^{2}$, above the xy-plane and inside the cylinder $(x-1)^{2}+y^{2}=1$.
20. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{2 x^{2}+y^{2}}$ does not exist.
21. Show that the divergence of the electric field $E(x, y, z)=\frac{k Q}{|r|^{3}} r$, where $r=x \hat{i}+y \hat{j}+z \hat{k}$, is zero.
22. Evaluate $\int_{C} y d x+z d y+x d z$, where C consist of part of the twisted cubic C_{1} with parametric equations $x=t, y=t^{2}, z=t^{3}$, where $0 \leq t \leq 1$, followed by the line segment C_{2} from $(1,1,1)$ to $(0,1,0)$.
23. Find the mass of the surface S composed of the part of the paraboloid $y=x^{2}+z^{2}$ between the planes $y=1$ and $y=4$ if the density at a point P on S is inversely proportional to the distance between P and the axis of symmetry of S.
(Ceiling: 35 Marks)
Part C (Essay questions)
Answer any $\boldsymbol{t w o}$ questions. Each question carries 10 marks.
24. (i) A storage tank has the shape of a right circular cylinder. Suppose that the radius and height of the tank are measured at 1.5 ft and 5 ft , respectively, with a possible error of 0.5 ft and 0.1 ft respectively. Use differentials to estimate the maximum error in calculating the capacity of the tank.
(ii) Show that the function f defined by $f(x, y)=2 x^{2}-x y$ is differentiable in the plane.
25. Find the maximum and minimum values of the function $f(x, y, z)=3 x+2 y+4 z$ subject to the constraints $x-y+2 z=1$ and $x^{2}+y^{2}=4$.
26. A lamina occupies a region R in the $x y$ - plane bounded by the parabola $y=x^{2}$ and the line $y=1$. Find the center of mass of the lamina if its mass density at a point (x, y) is directly propotional to the distance between the point and the x-axis.
27. Let T be the region bounded by the parabolic cylinder $z=1-y^{2}$ and the planes $z=0$ and $x=0$, and $x+z=2$, and let S be the surface of T. If $F(x, y, z)=x y^{2} \hat{i}+\left(\frac{1}{3} y^{3}-\cos x z\right) \hat{j}+x e^{y} \hat{k}$, using Divergence Theorem find $\iint_{S} F \cdot n d S$.
