$\qquad$
$\qquad$

## SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

## CC19U MTS6 B13 / CC20U MTS6 B13 - DIFFERENTIAL EQUATIONS

(Mathematics - Core Course) (2019, 2020 Admissions)
Time : 2.5 Hours

Maximum : 80 Marks
Credit : 4

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Solve the initial value problem $\frac{d y}{d t}=-2 y+5 ; y(0)=0$
2. Determine the order of the given differential equation $\left(1+y^{2}\right) \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t}+y=e^{t}$ also state whether the equation is linear or nonlinear.
3. Solve the initial value problem $\frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2(y-1)}, y(0)=-1$
4. Find an interval in which the initial value problem $t y^{\prime}+2 y=4 t^{2} ; y(1)=2$ has a unique solution.
5. Solve the linear differential equation $y^{\prime \prime}+7 y^{\prime}+12 y=0$
6. Find the Wronskian of $y_{1}=\sin t, y_{2}=\cos t$. Determine whether $y_{1}$ and $y_{2}$ are linearly independent.
7. Find the general solution of $4 y^{\prime \prime}+5 y^{\prime}-y=0$
8. Find the general solution of $16 y^{\prime \prime}+24 y^{\prime}+9 y=0$
9. What is the radius of convergence of the Taylor series for $\left(1+x^{2}\right)^{-1}$ about $x=0$ ?
10. Find the Laplace transform of $\sin a t$
11. Find the inverse Laplace transform of $\frac{b}{(s-a)^{2}+b^{2}}$
12. Write the expression for $\mathcal{L}\left(f^{\prime}(t)\right)$ and $\left.\mathcal{L}\left(f^{\prime \prime} t\right)\right)$
13. Find the inverse Laplace transform of $G(s)=\frac{1}{(s+2)^{2}+1}$
14. Determine whether the function $f(x)=|x|^{3}$ is even, odd, or neither.
15. Write heat equation and wave equation

## Part B (Paragraph questions)

Answer all questions. Each question carries 5 marks.
16. Determine whether the equation $(2 x+3)+(2 y-2) y^{\prime}=0$ is exact. If it is exact, find the solution.
17. Find an integrating factor of $\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0$
18. Find the particular solution of $y^{\prime \prime}+2 y^{\prime}+y=3 e^{-t}$
19. Use the method of variation of parameters find the general solution of the differential equation $y^{\prime \prime}+4 y=8 \tan t \quad-\pi / 2<t<\pi / 2$
20. Find the inverse Laplace transform of $\frac{2(s-1) e^{-2 s}}{s^{2}-2 s+2}$
21. Find the Laplace transform of $f(t)=\int_{0}^{t}(t-\tau)^{2} \cos (2 \tau) d \tau$
22. Solve the boundary value problem $y^{\prime \prime}+y=0 ; y(0)=1, y(\pi)=a$
23. Find the Fourier series of $f(x)=x,-1 \leq x<1 ; f(x+2)=f(x)$
(Ceiling: 35 Marks)

## Part C (Essay questions)

Answer any two questions. Each question carries 10 marks.
24. Solve the initial value problem $y^{\prime}+\frac{1}{4} y=3+2 \cos (2 t) ; y(0)=0$
25. Find the general solution of $y^{\prime \prime}+2 y^{\prime}=3+4 \sin (2 t)$
26. Using Laplace transform, find the solution of the initial value problem
$y^{\prime \prime}+\omega^{2} y=g(t) ; \quad y(0)=0, y^{\prime}(0)=-1$
27. Let $f(x)=\left\{\begin{array}{cc}x & -\pi \leq x<0, \\ 0, & 0 \leq x<\pi,\end{array}\right.$ and suppose that $f(x+2 \pi)=f(x)$. Find the Fourier series for $f$.

