\qquad
\qquad
SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2023
(CBCSS-UG)
(Regular/Supplementary/Improvement)
CC19U MTS6 E01 / CC20U MTS6 E01 - GRAPH THEORY
(Mathematics - Elective Course)
(2019, 2020 Admissions)

Time: 2 Hours

Maximum: 60 Marks
Credit: 3

Section A

Answer all questions. Each question carries 2 marks.

1. Define graph isomorphism.
2. Sketch a self-complementary graph with 4 vertices.
3. What is meant by component of a graph? How many components are there for the graph given below?

4. Find the eccentricity of Peterson graph.
5. $\mathrm{A}(\mathrm{G})=\left[\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0\end{array}\right]$. Sketch the graph
6. Let G be an acyclic graph with 10 vertices and 3 components. Find number of edges of G.
7. Draw underlying simple graph of the given graph

8. Define a spanning tree. Give an example.
9. Find $\kappa(G)$ of star graphs with n vertices
10. Distinguish between Euler trail and Euler tour.
11. Prove that a graph is Hamiltonian if and only if its underlying simple graph is Hamiltonian.
12. Let G be a 4 - regular graph with 10 faces. Find number of vertices of G .
(Ceiling: 20 Marks)

Section B

Answer all questions. Each question carries 5 marks.
13. State and prove first theorem of graph theory.
14. Prove that a non- empty bipartite graph G with at least two vertices has no odd cycle.
15. Draw all trees with six vertices.
16. Prove that a connected graph G with n vertices has at least $n-1$ edges.
17. Let G be a connected graph with at least 3 vertices. Prove that if G has a bridge then G has a cut vertex.
18. Let G be a Hamiltonian graph then show that G does not have a cut vertex.
19. Prove that K_{5} is non planar.
(Ceiling: 30 Marks)

Section C

Answer any one question. The question carries 10 marks.
20. (a) Let u, v be distinct vertices of a tree T. Then prove that there is precisely one path from u to v
(b) let G be a graph without any loops. If for every pair of distinct vertices u and v of G, there is precisely one path from u to v then prove that G is a tree
21. (a) Prove that a simple graph is Hamiltonian if and only if closure of that graph is Hamiltonian
(b) Let G be a simple graph on n vertices with $n \geq 3$ then prove that if $c(G)$ is complete then G is Hamiltonian.

$$
(1 \times 10=10 \text { Marks })
$$

