22	P261 (Pages: 2) Name:	
	Reg.No:	
	SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023	
	(CBCSS - PG)	
	(Regular/Supplementary/Improvement)	
	CC19P CSS2 C09 - COMPUTATIONAL INTELLIGENCE	
	(Computer Science)	
Tim	(2019 Admission onwards) ne: 3 Hours Maximum: 30 Weightage	
1 11111		;
	Part-A	
	Answer any <i>four</i> questions. Each question carries 2 weightage.	
1.	Explain in brief strategies of state space search.	
2.	Examine in brief constraint satisfaction problem.	
3.	Describe representation and mappings.	
4.	Report the concept of instances and ISA relationships.	
5.	Describe in brief understanding as constrained satisfaction.	
6.	Report expert system shells.	
7.	Discuss Rote learning.	
	$(4 \times 2 = 8 \text{ Weightage})$)
	Part-B	
	Answer any <i>four</i> questions. Each question carries 3 weightage.	
8.	Expalin the application of artificial intelligence.	
9.	Inspect A* algorithm.	
10.	Dissect A* algorithm.	
11.	Describe Resolution in predicate logic.	
12.	Describe natural deduction.	
13.	Demonstrate slots.	
14.	Summarize hopfield networks.	
	$(4 \times 3 = 12 \text{ Weightage})$)
	Part-C	
	Answer any <i>two</i> questions. Each question carries 5 weightage.	

15. Explain production system.

- 16. Analyse Simple Hill Climbing and Steepest Ascent Hill Climbing.
- 17. Illustrate mini-max search procedure.
- 18. Explain the genetic algorithm.

 $(2 \times 5 = 10 \text{ Weightage})$
