22P257		(Pages	(Pages: 3)	
CC		IESTER M.A. DEGR (CBCSS) (Regular/Supplemen UANTITATIVE MET	5 - F tary	
		(Econo		
		(2019 Admissi	on	
Time:	3 Hours			
		Part	: A	
	Answe	r <i>all</i> questions. Each qu	esti	
1.	The set of all possi	ble outcomes of a rando)m (
	(a) Sample space		(
	(c) Compound even	nt	(
2.	The probability of	the interscetion of two i	nut	
	(a) Infinity	(b) Zero	(
3.	If X is a random va	ariable and 'b' is a const	tant	
	(a) V (X) + b	(b) V (X)	(
4.	If A is a constant E	E(A) =:		
	(a) A	(b) 0	(
5.	If X and Y are rand	lom variables, then E(X	Ξ+Y	
	(a) E(XY)	(b) E(Y)	(
6.	Mean of binomial	distribution is:		
	(a) Always more than its variance		(
	(c) Always equal to	o its variance	(
7.	A normal distribution is			
	(a) Symmetric	(b) Continuous	(
8.	The frequency curv	ve of lognormal distribu	tion	
	(a) Positively skewed (
	(c) Straight line		(
9.	The students t distr	ibution is introduced by	/:	
	(a) Karl Pearson	(b) Laplace	(
10	. The t distribution h	as degrees of freedom:		
	(a) n	(b) 2	(
		(1)	

,	Name:
E EXAMINATIO	Reg. No: N, APRIL 2023
PG) ry/Improvement)	
• •	NOMIC ANALYSIS – II
ics)	
n onwards)	Maximum: 20 Waightaga
	Maximum: 30 Weightage
X	
tion carries 1/5 we	eightage.
n experiment is:	
(b) Event	
(d) Mutually excl	usive event
utually exclussive	events is always:
(c) One	(d) None of these
nt then $V(X+b)$ i	s:
(c) bV (X)	(d) None of these
(c) 1	(d) 0.5
Y)=, provided	all the expectations exist:
(c) $E(X)+E(Y)$	(d) None of these
(b) Always less th	an its variance
(d) Always equal	to standard deviation
(c) Mesokurtic	(d) All the above
on is always:	
(b) Symmetric	
(d) Negatively ske	ewed
(c) William S Go	sset (d) None of these
(c) 10	(d) n-1

Turn Over

11. The values associated with a two-sided 95% confidence interval of the standa	urd normal
distribution are	

$(a) \pm 1.28$	$(b) \pm 1.645$	$(c) \pm 1.96$	$(d) \pm 2.575$
----------------	-----------------	----------------	-----------------

12. The maximum likelihood estimators are necessarily:

(a) unbiased	(b) sufficient	(c) most efficient	(d) unique		
13. Probability of type I error is called:					
(a) Significance Level		(b) Critical Region			
(c) Power of the test		(d) None of the above			
14. To test the significance of proportion, we use:					
(a) t-test	(b) F-test	(c) Normal test	(d) Chi-square test		

15. Ordinary sign test utilises:

(a) Poisson distribution

(c) both (a) and (b)

 $(15 \times 1/5 = 3 \text{ Weightage})$

Part B (Very Short Answer Questions)

Answer any *five* questions. Each question carries 1 weightage.

(b) Binomial distribution

(d) neither (a) nor (b)

16. Mention any two properties of distribution function.

17. Define variance of a random variable using expectation.

18. Mention any two properties of Poisson distribution.

19. Mention any two applications of Lognormal distribution.

20. Mention any two uses of chi square test.

21. Define sufficiency of an estimator.

22. Define critical region and significance level of a test.

23. What is ANOVA?

 $(5 \times 1 = 5 \text{ Weightage})$

Part C (Short Answer Questions) Answer any seven questions. Each question carries 2 weightage.

24. Define Sample space and Event. When will you say that two events are are mutually exclusive?

25. State and prove the addition theorem of probability.

26. State and prove Bayes' theorem.

27. What are the properties and uses of Binomial distribution?

28. Explain how you would find interval estimates for the variance of a normal population.

- 29. Explain the method of least squares.
- 30. Explain with example Simple and Composite hypothesis.

31. Explain how the Chi-square distribution may be used to test goodness of fit.

32. Explain the procedure in one sample sign test.

33. Explain two way ANOVA technique.

Part D (Essay questions)

Answer any *two* questions. Each question carries 4 weightage.

34. State and prove addition and multiplication theorem of expectation.

35. What is normal distribution? Discuss the useful ness and properties of normal distribution.

36. Explain the terms (i) parameter (ii) statistic (iii) sampling distribution. Derive the sampling distribution of mean of samples from a normal population.

37. (i) Mention the procedure for testing the equality of means of two populations. (ii) For a sample of 100 labourers from Kerala, the average daily wages is Rs. 10.5 with Sd Rs. 1.5. For a sample of 150 labourers from Tamil Nadu, the corresponding figures are Rs. 8 and Rs. 1 respectively. Can you conclude that the average wages of workers in Kerala are more than that of workers in Tamil Nadu?

22P257

$(7 \times 2 = 14 \text{ Weightage})$

 $(2 \times 4 = 8 \text{ Weightage})$