22P201

(Pages: 2)

Name:

Reg.No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C06 - ALGEBRA- II

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Prove that a field F is either of prime characteristic p and contains a subfield isomorphic to \mathbb{Z}_p or of characteristic 0 and contains a subfield isomorphic to \mathbb{Q} .
- 2. Prove that \mathbb{C} is a simple extension of \mathbb{R} .
- 3. Show that a regular 9-gon is not constructible.
- 4. Prove that finite extension of a finite field is finite.
- 5. Prove that any two algebraic closures of a field F are isomorphic.
- 6. Prove that \mathbb{C} is a splitting field over \mathbb{R} .
- 7. State Primitive Element Theorem.
- 8. Show that the polynomial $x^5 2$ is solvable by radicals over \mathbb{Q} .

$(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any *two* questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. A finite extension field E of a field F is an algebraic extension of F. What about the converse?
- 10. Find a basis and dimension of for $\mathbb{Q}(\sqrt{3}, \sqrt{7})$ over \mathbb{Q} .
- 11. State and Prove Fundamental Theorem of Algebra

UNIT - II

- 12. If F is a field of prime characteristic p, then prove that $(\alpha + \beta)^{p^n} = \alpha^{p^n} + \beta^{p^n}$ for all $\alpha, \beta \in F$ and all positive integers n.
- 13. If $E \leq \overline{F}$ is a splitting field over F, then prove that every irreducible polynomial in F[x] having a zero in E splits in E.

14. If E is a finite extension of F, then show that E is separable over F if and only if each α in E is separable over F.

UNIT - III

- 15. Describe the Galois group $G(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$.
- 16. State Main Theorem of Galois Theory
- 17. Find $\Phi_3(x)$ over \mathbb{Z}_2 .

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Let R be a commutative ring with unity. Then show that M is a maximal ideal of R if and only if R/M is a field.
- 19. Let F be a field and let f(x) be a nonconstant polynomial in F(x). Show that then there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.
- 20. State and Prove The Conjugation Isomorphism theorem.
- 21. Let F be a field of characteristic 0 and let $a \in F$. If K is the splitting field of $x^n a$ over F, then prove that G(K/F) is a solvable group.

 $(2 \times 5 = 10 \text{ Weightage})$
