\qquad
\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - PG)
(Regular/Supplementary/Improvement)
CC19P MTH2 C07 - REAL ANALYSIS - II
(Mathematics)
(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Let A be the set of irrational numbers in $[0,1]$. Prove that $m^{*}(A)=1$.
2. Prove that the Cantor set has measure zero.
3. Prove that a real-valued function that is continuous on its measurable domain is measurable.
4. Give an example of an increasing sequence of Riemann integrable functions that converges to a function f which is not Riemann integrable.
5. Define Lebesgue integral of a function f over E.
6. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise a.e. on E to f and f is finite a.e. on E . Then prove that $\left\{f_{n}\right\} \rightarrow$ f in measure on E .
7. Let f be a Lipschitz function on $[\mathrm{a}, \mathrm{b}]$. Show that $\mathrm{TV}(\mathrm{f}) \leq \mathrm{c}(\mathrm{b}-\mathrm{a})$.
8. State Riesz - Fischer theorem.

$$
(8 \times 1=8 \text { Weightage })
$$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

9. Let E be a measurable set of finite outer measure. Prove that for each $\varepsilon>0$, there is a finite disjoint collection of open intervals $\left\{I_{k}\right\}_{k=1}^{n}$ for which if $O=\mathrm{U}_{k=1}^{n} I_{k}$, then $m^{*}(E \sim O)+m^{*}(O \sim E)<\varepsilon$.
10. Prove that any set E of real numbers with positive outer measure contains a subset that fails to be measurable.
11. State and prove Lusin's theorem.

UNIT II

12. State and prove the bounded convergence theorem.
13. Let E be of finite measure. Suppose the sequence of functions $\left\{f_{n}\right\}$ is uniformly integrable over E . If $\left\{f_{n}\right\} \rightarrow f$ pointwise a.e. on E then prove that f is integrable over E and $\lim _{n \rightarrow \infty} \int_{E} f_{n}=\int_{E} f$.
14. State Fatou's lemma and show by an example that the inquality in Fatou's lemma may be strict.

UNIT III

15. Show that the function f is of bounded variation on the closed, bounded interval [a, b] if and only if it is the difference of two increasing functions on $[a, b]$.
16. Prove that a function f on a closed, bounded interval $[\mathrm{a}, \mathrm{b}]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.
17. State and prove Jensen's inequality.

$$
(6 \times 2=12 \text { Weightage })
$$

PART C

Answer any two questions. Each question carries 5 weightage.
18. Prove that the set function Lebesgue measure, defined on the σ - algebra of Lebesgue measurable sets, assigns length to any interval, is translation invariant and is countable additive.
19. Let f be a bounded function on the closed, bounded interval $[\mathrm{a}, \mathrm{b}]$. Then prove that f is Riemann integrable over $[\mathrm{a}, \mathrm{b}]$ if and only if the set of points in $[\mathrm{a}, \mathrm{b}]$ at which f fails to be continuous has measure zero.
20. Let the function f be continuous on the closed, bounded interval [a,b]. Prove that f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\left\{\operatorname{Diff}_{h}(f)\right\}, 0<h \leq 1$ is uniformly integrable over [a, b].
21. Prove that $L^{p}(E)$ is a normed linear space for $1 \leq p \leq \infty$.
($2 \times 5=10$ Weightage)

