(Pages: 2)

Name: Reg. No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C07 - REAL ANALYSIS - II

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Let A be the set of irrational numbers in [0, 1]. Prove that $m^*(A) = 1$.
- 2. Prove that the Cantor set has measure zero.
- 3. Prove that a real-valued function that is continuous on its measurable domain is measurable.
- 4. Give an example of an increasing sequence of Riemann integrable functions that converges to a function f which is not Riemann integrable.
- 5. Define Lebesgue integral of a function f over E.
- 6. Assume E has finite measure. Let {f_n} be a sequence of measurable functions on E that converges pointwise a.e. on E to f and f is finite a.e. on E. Then prove that {f_n} → f in measure on E.
- 7. Let f be a Lipschitz function on [a, b]. Show that $TV(f) \le c (b a)$.
- 8. State Riesz Fischer theorem.

$(8 \times 1 = 8 \text{ Weightage})$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

- Let E be a measurable set of finite outer measure. Prove that for each ε > 0, there is a finite disjoint collection of open intervals {I_k}ⁿ_{k=1} for which if O = ∪ⁿ_{k=1} I_k, then m^{*}(E ~ 0) + m^{*}(0 ~ E) < ε.
- 10. Prove that any set E of real numbers with positive outer measure contains a subset that fails to be measurable.
- 11. State and prove Lusin's theorem.

22P202

UNIT II

- 12. State and prove the bounded convergence theorem.
- 13. Let E be of finite measure. Suppose the sequence of functions {f_n} is uniformly integrable over E. If {f_n} → f pointwise a.e. on E then prove that f is integrable over E and lim_{n→∞} ∫_E f_n = ∫_E f.
- 14. State Fatou's lemma and show by an example that the inquality in Fatou's lemma may be strict.

UNIT III

- 15. Show that the function f is of bounded variation on the closed, bounded interval [a, b] if and only if it is the difference of two increasing functions on [a, b].
- 16. Prove that a function f on a closed, bounded interval [a, b] is absolutely continuous on[a, b] if and only if it is an indefinite integral over [a, b].
- 17. State and prove Jensen's inequality.

$(6 \times 2 = 12 \text{ Weightage})$

PART C

Answer any two questions. Each question carries 5 weightage.

- 18. Prove that the set function Lebesgue measure, defined on the σ algebra of Lebesgue measurable sets, assigns length to any interval, is translation invariant and is countable additive.
- 19. Let f be a bounded function on the closed, bounded interval [a, b]. Then prove that f is Riemann integrable over [a, b] if and only if the set of points in [a, b] at which f fails to be continuous has measure zero.
- 20. Let the function f be continuous on the closed, bounded interval [a, b]. Prove that f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{Diff_h(f)\}, 0 < h \leq 1$ is uniformly integrable over [a, b].
- 21. Prove that $L^p(E)$ is a normed linear space for $1 \le p \le \infty$.

$(2 \times 5 = 10 \text{ Weightage})$