(Pages: 2)

Name..... Reg.No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CUCSS - PG) (Regular/Supplementary/Improvement) **CC19 MTH2 C08 - TOPOLOGY** (Mathematics) (2019 Admission onwards)

Time: 3 Hours

Maximum: 30 Weightage

Part A

Answer *all* questions. Each carries 1 weightage.

- 1. Prove that a subset A of a topological space X is open if and only if it is a nieghbourhood of each of its points.
- 2. Define projection functions. Prove that projection functions are not closed.
- 3. Let (X, τ) be a topological space abd \mathcal{B} is a subfamily of τ . Then prove that \mathcal{B} is a base for τ if and only if for any $x \in X$ and an open set G containing x, there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subset G$.
- 4. Prove that every co-finite space is compact.
- 5. Prove that a space X is locally connected at $x \in X$, if and only if for every nieghbourhood N of x the component of N containing x is a nieghbourhood of x.
- 6. Prove that every closed surjective map is a quotient map.
- 7. Suppose y is an accumulation point of a subset A of a T_1 space X. Then prove that every nieghbourhood of y contains infinitely many points of A.
- 8. Define T_3 space. Prove that every T_3 space is T_2

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions from each unit. Each carries 2 weightage.

Unit 1

- 9. Let (X, τ) be a topological space and S is a family of subsets of X. Prove that S is a subbase for τ if and only if S generates τ .
- 10. Prove that a subset A of a space X is dense in X if and only if, for every non-empty open subset B of X, $A \cap B \neq \phi$. Justify \mathbb{Q} is dense in \mathbb{R} .
- 11. For a subset A of a space X, Prove that $\overline{A} = A \cup A'$.

22P203

Unit 2

- 12. Let X and Y be topological spaces $x \in X$ and $f : X \to Y$ a function. Then prove that f is continuous at x if and only if for every sequence $\{x_n\}$ which converges to x in X in the sequence $\{f(x_n)\}$ converges to f(x) in Y.
- 13. Prove that every quotient space of locally connected space is locally connected.
- 14. Prove that subset of \mathbb{R} is connected if and only if it is an interval.

Unit 3

- 15. Prove that all metric spaces are T_4 .
- 16. Prove that every regular Lideloff space is normal.
- 17. Define heriditary property and prove that regularity is a heriditary property.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C Answer any *two* questions. Each carries 5 weightage.

- 18. Prove that the product topology on \mathbb{R}^n coincides with the usual topology on it.
- 19. (a) Let \mathfrak{C} be the collection of connected subsets of a space X, such that no two members of \mathfrak{C} are nutually separated. Prove that $\bigcup_{c \in \mathfrak{C}} c$ is connected.
 - (b) Prove that product of two connected topological space is connected.
- 20. (a) Prove that every Tyconoff space is T_3 .
 - (b) Let Y be a Hausdroff space. Prove that for any space X and two continuous maps f and g from X to Y, the set $\{x \in X : f(x) = g(x)\}$ is closed in X.
- 21. State and prove Tietze extension theorem.

 $(2 \times 5 = 10 \text{ Weightage})$
