\qquad
\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023
 (CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C09 - ODE AND CALCULUS OF VARIATIONS

(Mathematics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Find a power series solution of the differential equation $y^{\prime}=y$.
2. Determine the nature of the point $x=0$ for the differential equation $y^{\prime \prime}+\frac{1}{x^{2}} y^{\prime}-\frac{1}{x^{3}} y=0$.
3. Verify that $e^{x}=\lim _{b \rightarrow \infty} F\left(a, b, a, \frac{x}{b}\right)$.
4. Describe the phase portrait of the system $\frac{d x}{d t}=0, \frac{d y}{d t}=0$.
5. Determine the nature and stability properties of the critical point $(0,0)$ of the linear autonomous system $\frac{d x}{d t}=-3 x+4 y, \quad \frac{d y}{d t}=-2 x+3 y$.
6. Determine whether the function $f(x, y)=-x^{2}-4 x y-5 y^{2}$ is positive definite, negative definite or neither.
7. State Sturm comparison theorem.
8. Using Picard's method of successive approximation, solve the initial value problem $y^{\prime}=y, y(0)=1$ (start with $y_{0}(x)=1$).

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

9. Find the general solution of $y^{\prime \prime}+x y^{\prime}+y=0$ in terms of power series in x.
10. Determine the nature of the point $x=\infty$ for the Euler's equation $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$
11. For the Legendre polynomial $P_{n}(x)$, prove that $P_{n}(1)=1$ and $P_{n}(-1)=(-1)^{n}$.

UNIT - II

12.

Obtain the two independent solutions of the homogeneous system $\left\{\begin{array}{l}\frac{d x}{d t}=x+2 y \\ \frac{d y}{d t}=3 x+2 y\end{array}\right.$ and hence write the
general solution of this system. Also show that $x=3 t-2, y=-2 t+3$ is a particular solution of the
nonhomogeneous system $\left\{\begin{array}{l}\frac{d x}{d t}=x+2 y+t-1 \\ \frac{d y}{d t}=3 x+2 y-5 t-2\end{array}\right.$ and then write the general solution of this system.
13. For the linear system $\frac{d x}{d t}=-x, \frac{d y}{d t}=-2 y,(i)$ find the critical points (ii) find the general solution (iii) find the differential equation of paths and solve it (iv) discuss the stability of the critical point.
14. Verify that $(0,0)$ is a simple critical point for the system $\frac{d x}{d t}=x+y-2 x y, \frac{d y}{d t}=-2 x+y+3 y^{2}$ and determine its nature.

UNIT - III

15. State and prove Sturm separation theorem.
16. Show that $f(x, y)=x y^{2}$ satisfies a Lipschitz condition on any rectangle $a \leq x \leq b$ and $c \leq y \leq d$, but does not satisfy a Lipschitz condition on any strip $a \leq x \leq b$ and $-\infty<y<\infty$.
17. Find the plane curve of fixed perimeter and maximum area.

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. (i) State and prove the orthogonality property of Legendre polynomials.
(ii) Find the first two terms of the Legender series of $f(x)=\left\{\begin{array}{ll}0 & \text { if }-1 \leq x<0, \\ x & \text { if } 0 \leq x \leq 1\end{array}\right.$.
19. State and prove the orthogonality property of Bessel functions.
20. Find the general solution of $\frac{d x}{d t}=3 x-4 y, \frac{d y}{d t}=x-y$.
21. Derive Euler's equation for an extremal and find the curve joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ that yields a surface of revolution of minimum area when revolved about the x - axis.

