(Pages: 2)

Name: Reg. No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CUCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C10 – OPERATIONS RESEARCH

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

- 1. Define convex function with an example.
- 2. What is meant by canonical form of an LPP?
- 3. Define basic feasible solution.
- 4. What is meant by complementary slackness condition?
- 5. Show that for any feasible flow in a graph, the flow in the return arc is not greater than the capacity of any cut in the graph.
- 6. What is meant by parametric linear programming problem?
- 7. What is the difference between mixed and pure strategies in game theory?
- 8. Explain what is meant by zero sum game?

$(8 \times 1 = 8$ Weightage)

PART B

Two questions should be answered from each unit. Each question carries 2 weightage

UNIT I

- 9. Let f(x) be defined in a convex domain and be differentiable. Prove the necessary and sufficient condition for the function to be convex.
- 10. Explain simplex method to solve an LPP.
- 11. Prove that a vertex of S_F is a basic feasible solution.

UNIT II

- 12. Prove that the dual of dual is primal.
- 13. Show that the transportation problem has a triangular basis.
- 14. How to determine the spanning tree of minimum length?

22P205

UNIT III

- 15. How to determine spanning tree of minimum length?
- 16. Explain sensitivity analysis.
- 17. Explain notion of dominance in game theory.

 $(6 \times 2 = 12 \text{ Weightage})$

PART C

Answer any *two* questions. Each question carries 5 weightage.

18. Solve by method of simplex method.

Maximize $y_1 + y_2 + y_3$, subject to $2y_1 + y_2 + 2y_3 \le 2, 4y_1 + 2y_2 + y_3 \le 2, y_i$ $\ge 0, i = 1,2,3$

19. Explain the method of minimum path and prove.

20. Solve for minimum cost.

3	4	6	100
7	3	8	80
6	4	5	90
7	5	2	60
120	110	110	1

21. State and prove the fundamental theorem of rectangular games.

 $(2 \times 5 = 10 \text{ Weightage})$
