\qquad
\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023
 (CBCSS - PG)
 (Regular/Supplementary/Improvement)
 CC19P PHY2 C06-MATHEMATICAL PHYSICS - II

(Physics)
(2019 Admission onwards)
Time : 3 Hours

Maximum : 30 Weightage

Section A

Answer all questions. Each question carries 1 weightage.

1. Evaluate the differentiability of the function $f(z)=\frac{1}{z}$.
2. Briefly explain the difference between Taylor expansion and Laurent expansion.
3. State and prove the Rearrangement theorem.
4. Show that the identity element of a group is a class by itself.
5. Write a note on permutation groups.
6. What is Lagrangian multiplier in calculus of variation?
7. Explain the difference between Fredholm and Volterra integral equations.
8. Write a brief note on Sturm-Liouville equation.

Section B

Answer any two questions. Each question carries 5 weightage.
9. State and prove Cauchy's integral theorem. Illustrate with a suitable example.
10. Explain the homomorphism of groups. Establish the homomorphism between $\mathrm{SU}(2)$ and $\mathrm{SO}(3)$ groups.
11. Explain the concept of variation and hence determine the optical path near event horizon of a blackhole.
12. Discuss the technique of seperable kernel for solving integral equation.
($2 \times 5=10$ Weightage)

Section C

Answer any four questions. Each question carries 3 weightage.
13. Show that $e^{z^{2}}$ has an essential singularity at infinity. \{Hint: use Taylor expansion\}
14. Use the residue theorem to evaluate the integral $I=\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x$ with $\mathrm{a}>0$.
15. Find out the conjugate element of C_{3} of the symmetry group of equilateral triangle.
16. Obtain the Lagrangian equation of motion using variational principle.
17. Solve $\varphi(x)=x+\int_{0}^{x}(t-x) \varphi(t) d t$ using Laplace transform solution method.
18. Show that Green's function is symmetric using Eigenfunction expansion method.
19. FInd the Green's function for $y^{\prime \prime}(x)+\lambda y(x)=0$ with boundary conditions $y(0)=y(1)=0$.
($4 \times 3=12$ Weightage)

