21P403

(Pages: 2)

Name: Reg.No:

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 E05 - ADVANCED COMPLEX ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer any *all* questions from each unit. Each question carries 1 weightage.

- 1. Suppose $\mathcal{F} \subseteq (C(G, \Omega))$ is equicontinuous at each point of G. Prove that \mathcal{F} is equicontinuous over each compact subset of G.
- 2. If *d* is the metric of \mathbb{C}_{∞} , show that $d\left(\frac{1}{z},\infty\right) = d(z,0)$ for $z \in \mathbb{C}$.
- 3. Show that Conformal equivalence is an equivalence.
- 4. Define the elementary factor function $E_p(z)$. Prove that $E_p(z) \approx 1$ for large p.
- 5. Define the gamma function. Show that the residue of the gamma function Γ at simple pole -n is given by $Res(\Gamma, -n) = \frac{(-1)^n}{n!}$
- 6. Let $S = \{z : Re(z) \le A\}$ where $-\infty < A < \infty$. Prove that for $\varepsilon > 0$ there is $\kappa > 1$ such that for all zin S, $\left| \int_{\alpha}^{\beta} (e^t - 1)^{-1} t^{z-1} dt \right| < \varepsilon$ whenever $\beta > \alpha > \kappa$.
- 7. Show that the coefficients a_{-n} in the Laurent series for $(e^z 1)^{-1}$ are zeros for $-n \leq -2$
- 8. When we can consider (f_1, D_1) as an analytic continuation of (f_0, D_0) along a path γ ?

 $(8 \times 1 = 8$ Weightage)

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. Suppose G is open in C. Prove that there is a sequence {K_n} of compact subsets of G such that G = ∪_{n=1}[∞] K_n satisfying
 (i) K_n ⊆ int K_{n+1}
 (ii) K ⊆ G and K compact implies K ⊆ K_n for some n.
- 10. Show that $\mathcal{F} \subseteq (C(G, \Omega))$ is normal iff for every compact set $K \subseteq G$ and $\delta > 0$ there are functions $f_1, f_2, \ldots, f_n \in \mathcal{F}$ such that for $f \in \mathcal{F}$, there is at least one $k, 1 \leq k \leq n$ with sup $\{d(f(z), f_k(z)) : z \in K\} < \delta.$

11. Let $\{f_n\}$ is a sequence in H(G) and $f \in (C(G, \mathbb{C}))$ such that $f_n \to f$. Prove that f is analytic and $f_n^{(k)} \to f^{(k)}$ for each integer $k \ge 1$.

UNIT - II

- 12. Find a factorization for $\cos\left(\frac{\pi z}{4}\right) \sin\left(\frac{\pi z}{4}\right)$
- 13. Prove that $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ for Re(z) > 0.
- 14. Prove that $\zeta(z) = 2(2\pi)^{z-1}\Gamma(1-z)\zeta(1-z)\sin\left(\frac{\pi}{2}z\right)$ for -1 < Re(z) < 0.

UNIT - III

- 15. Let G be a region and let $\{a_k\} \subseteq G$ be a sequence of distinct points such that $\{a_k\}$ has no limit points. For each $k \in \mathbb{N}$, let $S_k(z) = \sum_{j=1}^{m_k} \frac{A_{jk}}{(z-a_k)^j}$ where $m_k \in \mathbb{N}$, $A_{jk} \in \mathbb{C}$. Prove that there exist $f \in M(G)$ whose poles are exactly $\{a_k\}$ and the singular part of f at $z = a_k$ is $S_k(z)$.
- 16. Let f be an analytic function on a region containing $\overline{B}(0;r)$ and suppose that a_1, a_2, \ldots, a_n are the zeros of f in B(0;r) repeated according to multiplicity. Let $f(0) \neq 0$, prove that $\log |f(0)| = -\sum_{k=1}^{n} \log \left(\frac{r}{|a_k|}\right) + \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| d\theta$
- 17. Prove that if f is an entire function of order λ then f' also has order λ .

$(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. (a) Let $Re(z_n) > 0, \forall n \in \mathbb{N}$. Prove that $\prod_{n=1}^{\infty} z_n$ converges to a nonzero number iff the series $\sum_{n=1}^{\infty} \log z_n$ converges.
 - (b) Let $Re(z_n) > -1$. Prove that the series $\sum \log(1 + z_n)$ converges absolutely iff the series $\sum z_n$ converges absolutely.

19. Let (X_n, d_n) are metric spaces for each *n*. Prove that the space $\left(\prod_{n=1}^{\infty} X_n, d\right)$ where

$$d = \sum_{n=1}^{\infty} \left[\left(\frac{1}{2}\right)^n \left(\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} \right) \right] \text{ is a metric space. Also if } \xi^k = \{x_n^k\}_{n=1}^{\infty} \text{ is in } X = \prod_{n=1}^{\infty} X_n \text{, then prove that } \xi^k \to \xi = \{x_n\} \text{ iff } x_n^k \to x_n \text{ for each n. If each } (x_n, d_n) \text{ is compact then } X \text{ is compact.}$$

20. (a) State and prove Bohr-Mollerup theorem.

(b) Let K be a compact subset of \mathbb{C} and let E be a subset of $\mathbb{C}_{\infty} - K$ that meets each component of $\mathbb{C}_{\infty} - K$. If f is analytic on an open set containing K and $\varepsilon > 0$. Prove that there is a rational function R(z) whose only poles lie in E and $|f(z) - R(z)| < \varepsilon$ for all z in K.

21. Let f be an entire function of genus μ . Prove that for each positive number α there is a number r_0 such that for $|z| > r_0 |f(z)| < \exp(\alpha |z|^{\mu+1})$

 $(2 \times 5 = 10 \text{ Weightage})$