(Pages: 2)

Name:	•••	 • •	••	••	• •	•••	••	• •	•	•	••	•	•••	••	•
Reg N	0														

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 E09 – DIFFERENTIAL GEOMETRY

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Define the level set and graph of any function $f: \mathbb{R}^{n+1} \to \mathbb{R}$
- 2. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1 x_2^2$
- 3. Define Gauss map, Spherical image. Find the spherical image of the cone $-x_1^2 + x_2^2 = 0$ oriented by $\frac{\nabla f}{\|\nabla f\|}$.
- 4. For each a, b, c, d ∈ ℝ, prove that the parametrized curve
 α(t) = (cos(at + b), sin(at + b), ct + d) is geodesic in the cylinder x₁² + x₂² = 1 in ℝ³
- 5. Compute $\nabla_v f$ where $f: \mathbb{R}^2 \to \mathbb{R}, v \in \mathbb{R}_p^2$, $f(x_1, x_2) = x_1^2 x_2^2$, $v = (1, 1, \cos \theta, \sin \theta)$
- 6. Compute $\int_{\alpha} \sum_{i=1}^{n+1} x_i dx_i$ where $\alpha \colon [0,1] \to \mathbb{R}^{n+1}$ is such that $\alpha(0) = (0,0,\dots,0)$ and $\alpha(1) = (1,1,\dots,1)$

7. Find a global parametrization of the curve $ax_1 + bx_2 = c$, $(a, b) \neq 0$ oriented by $\frac{\nabla f}{\|\nabla f\|}$

8. Define parametrized n –surface in \mathbb{R}^{n+k} , $k \ge 0$

(8 × 1 = 8 Weightage)

Part B

Answer any two questions form each unit. Each question carries 2 weightage.

Unit-I

- 9. Find the integral curve through p = (1,1) of the vector field X on \mathbb{R}^2 given by X(p) = (p, X(p)) Where $X((x_1, x_2)) = (x_2, x_1)$.
- 10. Show that the maximum and minimum values of the function $g(x_1, x_2 \dots x_n) = \sum_{i,j=1}^{n+1} a_{ij} x_i x_j$ on the unit sphere $x_1^2 + x_2^2 + \dots x_n^2 = 1$ where (a_{ij}) is a symmetric $n \times n$ matrix of real numbers, are the eigen values of the matrix (a_{ij})
- 11. Let $S = f^{-1}(c)$ be an n-surface in \mathbb{R}^{n+1} , where $f: U \to \mathbb{R}$ is such that $\nabla f(q) \neq 0 \forall q \in S$ and let **X** be a smooth vector field on U whose restriction to S is a tangent

21P404

vector field on S.If $\alpha: I \to U$ is any integral curve of **X** such that $\alpha(t_0) \in S$ for some $t_0 \in S$. Then prove that $\alpha(t) \in S \ \forall t \in I$

Unit-II

- 12. Compute the Weingarten map for the circular cylinder $x_2^2 + x_3^2 = a^2$ in \mathbb{R}^3 , $a \neq 0$, $N = \frac{\nabla f}{\|\nabla f\|}$.
- 13. Let $\alpha(t) = (x(t), y(t)), t \in I$ be a local parametrization of the oriented plane curve *C*. Show that the curvature $\kappa \circ \alpha = \frac{x'y'' x''y'}{[(x')^2 + (y')^2]^{3/2}}$

14. Prove that $\eta = \frac{-x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$ is not an exact 1-form on $\mathbb{R}^2 \setminus \{0\}$.

Unit-III

- 15. Let *V* be a finite dimensional real vector space with dot product and $L: V \rightarrow V$ be a self adjoint linear operator. Prove that there exist an orthonormal basis for *V* consisting of eigen vectors of *L*.
- 16. Find the Gaussian curvature of the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$ (*a*, *b*, *c* all \neq 0) oriented by its outward normal
- 17. Prove that on each compact oriented n surface S in \mathbb{R}^{n+1} there exist a point p such that the second fundamental form at p is definite.

$(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Let *S* be a compact connected oriented n surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then prove that the Gauss map maps *S* onto the unit sphere S^n .
- 19. a) Let *S* be an n surface in \mathbb{R}^{n+1} and $\alpha: I \to S$ be a parametrized curve in *S*, let $t_0 \in I$, $v \in S_{\alpha(t_0)}$. Then prove that there exist a unique vector field \mathbb{V} , tangent to *S* along α , which is parallel and has $\mathbb{V}(t_0) = v$.

b) Let *S* be an n – surface in \mathbb{R}^{n+1} , let $p, q, \in S$ and let α be a piece wise smooth parametrized curve from p to q. Then prove that the parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphism which preserves dot products.

- 20. Let *C* be a plane curve. Then prove that *C* has a global parametrization if and only if *C* is connected.
- 21. State and prove inverse function theorem for n-surfaces.

 $(2 \times 5 = 10 \text{ Weightage})$