\qquad
\qquad
FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023
(CBCSS - PG)
(Regular/Supplementary/Improvement)

CC19P MTH4 E09 - DIFFERENTIAL GEOMETRY
 (Mathematics)

(2019 Admission onwards)
Time: Three Hours
Maximum: 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. Define the level set and graph of any function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$
2. Find and sketch the gradient field of the function $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}^{2}$
3. Define Gauss map, Spherical image. Find the spherical image of the cone $-x_{1}^{2}+$ $x_{2}^{2}=0$ oriented by $\frac{\nabla f}{\|\nabla f\|}$.
4. For each $a, b, c, d \in \mathbb{R}$, prove that the parametrized curve $\alpha(t)=(\cos (a t+b), \sin (a t+b), c t+d)$ is geodesic in the cylinder $x_{1}^{2}+x_{2}^{2}=1$ in \mathbb{R}^{3}
5. Compute $\nabla_{v} f$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, v \in \mathbb{R}_{p}^{2}, f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}, v=(1,1, \cos \theta, \sin \theta)$
6. Compute $\int_{\alpha} \sum_{i=1}^{n+1} x_{i} d x_{i}$ where $\alpha:[0,1] \rightarrow \mathbb{R}^{n+1}$ is such that $\alpha(0)=(0,0, \ldots, 0)$ and $\alpha(1)=(1,1, \ldots, 1)$
7. Find a global parametrization of the curve $a x_{1}+b x_{2}=c,(a, b) \neq 0$ oriented by $\frac{\nabla f}{\|\nabla f\|}$
8. Define parametrized n-surface in $\mathbb{R}^{n+k}, k \geq 0$
($8 \times 1=8$ Weightage)

Part B

Answer any two questions form each unit. Each question carries 2 weightage.

Unit-I

9. Find the integral curve through $p=(1,1)$ of the vector field \boldsymbol{X} on \mathbb{R}^{2} given by $\boldsymbol{X}(p)=(p, X(p))$ Where $X\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{2}, x_{1}\right)$.
10. Show that the maximum and minimum values of the function $g\left(x_{1}, x_{2} \ldots x_{n}\right)=\sum_{i, j=1}^{n+1} a_{i j} x_{i} x_{j}$ on the unit sphere $x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}=1$ where $\left(a_{i j}\right)$ is a symmetric $n \times n$ matrix of real numbers, are the eigen values of the matrix $\left(a_{i j}\right)$
11. Let $S=f^{-1}(c)$ be an $n-$ surface in \mathbb{R}^{n+1}, where $f: U \rightarrow \mathbb{R}$ is such that $\nabla f(q) \neq$ $0 \forall q \in S$ and let \boldsymbol{X} be a smooth vector field on U whose restriction to S is a tangent
vector field on S.If $\alpha: I \rightarrow U$ is any integral curve of \boldsymbol{X} such that $\alpha\left(t_{0}\right) \in S$ for some $t_{0} \in S$.Then prove that $\alpha(t) \in S \forall t \in I$

Unit-II
12. Compute the Weingarten map for the circular cylinder $x_{2}^{2}+x_{3}^{2}=a^{2}$ in $\mathbb{R}^{3}, a \neq 0, N=$ $\frac{\nabla f}{\|\nabla f\|}$.
13. Let $\alpha(t)=(x(t), y(t)), t \in I$ be a local parametrization of the oriented plane curve C. Show that the curvature $\kappa \circ \alpha=\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left[\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}$
14. Prove that $\eta=\frac{-x_{2}}{x_{1}^{2}+x_{2}^{2}} d x_{1}+\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} d x_{2}$ is not an exact 1 -form on $\mathbb{R}^{2} \backslash\{0\}$.

Unit-III

15. Let V be a finite dimensional real vector space with dot product and $L: V \rightarrow V$ be a self adjoint linear operator. Prove that there exist an orthonormal basis for V consisting of eigen vectors of L.
16. Find the Gaussian curvature of the ellipsoid $\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1(a, b, c$ all $\neq 0)$ oriented by its outward normal
17. Prove that on each compact oriented n - surface S in \mathbb{R}^{n+1} there exist a point p such that the second fundamental form at p is definite.

$$
(6 \times 2=12 \text { Weightage })
$$

Part C

Answer any two questions. Each question carries 5 weightage.
18. Let S be a compact connected oriented $n-\operatorname{surface}$ in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then prove that the Gauss map maps S onto the unit sphere S^{n}.
19. a) Let S be an $n-$ surface in \mathbb{R}^{n+1} and $\alpha: I \rightarrow S$ be a parametrized curve in S, let $t_{0} \in$ $I, v \in S_{\alpha\left(t_{0}\right)}$. Then prove that there exist a unique vector field \mathbb{V}, tangent to S along α, which is parallel and has $\mathbb{V}\left(t_{0}\right)=\boldsymbol{v}$.
b) Let S be an n - surface in \mathbb{R}^{n+1}, let $p, q, \in S$ and let α be a piece wise smooth parametrized curve from p to q . Then prove that the parallel transport $P_{\alpha}: S_{p} \rightarrow S_{q}$ along α is a vector space isomorphism which preserves dot products.
20. Let C be a plane curve. Then prove that C has a global parametrization if and only if C is connected.
21. State and prove inverse function theorem for n -surfaces.

