$\qquad$

# FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2023 

(CBCSS - PG)
(Regular/Supplementary/Improvement)

## CC19P PHY4 C12 - ATOMIC AND MOLECULAR SPECTROSCOPY

(Physics)
(2019 Admission onwards)
Time : 3 Hours
Maximum : 30 Weightage

## Section A

Answer all questions. Each question carries 1 weightage.

1. Write a note on interaction energies of L S coupling and j-j coupling schemes.
2. Which of the following molecules will show a microwave rotational spectrum: $\mathrm{H}_{2}, \mathrm{HCl}, \mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{Cl}$ ?
3. Illustrate mutual exclusion principle with an example.
4. What is inverse Raman Effect?
5. Discuss Frank - Condon principle.
6. Outline the principle of NMR spectrum.
7. Explain the factors responsible for hyperfine structure in ESR spectra.
8. Discuss recoilless emission and absorption of gamma rays.
( $8 \times 1=8$ Weightage)

## Section B

Answer any two questions. Each question carries 5 weightage.
9. Describe the normal and anomalous Zeeman effect. Explain the Zeeman effect in sodium with a diagram.
10. Explain the technique of FTIR spectroscopy. What is its advantage over conventional IR technique?
11. What is Deslandre's table? Explain progressions \& sequences in electronic spectroscopy of molecules.
12. Discuss the principle of Mossbauer spectroscopy. Write notes on isomer shift and magnetic hyperfine interaction in Mossbauer spectroscopy.

$$
(2 \times 5=10 \text { Weightage })
$$

## Section C

Answer any four questions. Each question carries 3 weightage.
13. Evaluate the different spectroscopic terms arising due to (1) an electron in p orbital and another electron in $f$ orbital and (2) an electron in $p$ orbital and another electron in $d$ orbital in $j-j$ coupling.
14. Which of the following molecules have a microwave spectrum? Explain the reason. (a) $O_{2}$ (b) HCl (c) IF (d) $F_{2}$
15. The fundamental band for HCI is centred at $2886 \mathrm{~cm}^{-1}$. Assuming that the internuclear distance is 1.276 $A^{0}$, calculate the wave number of the first two lines of each of the P and R branches of HCI.
16. Bond length of $H_{2}$ molecule is $0.7417 A^{0}$. Determine the position of first three rotational Raman lines in the spectrum. Given, mass of $\mathrm{H}=1.673 \times 10^{-27} \mathrm{Kg}$.
17. The rotational lines of a band system of electronic vibration spectra is given by $\bar{\nu}=\left(24762+25 m-2.1 \mathrm{~m}^{2}\right) \mathrm{cm}^{-1}$, where $\mathrm{m}= \pm 1, \pm 2$ etc. Deduce the values of $\mathrm{B}^{\prime}, \mathrm{B}^{\prime \prime}$ and the position of band head.
18. An NMR signal for a compound is found to be 180 Hz downward from TMS $\left[\left(\mathrm{CH}_{3}\right)_{4}\right.$. Si] peak using a spectrometer operating at 60 MHz . Calculate its chemical shift in ppm.
19. A free electron is placed in a magnetic field of strength 1.5 T . Calculate the resonance frequency if $" \mathrm{~g} "=2.0023$.

