FIFTH SEMESTER B.Voc. DEGREE EXAMINATION, NOVEMBER 2022

 (Regular/Supplementary/Improvement)
CC18U GEC5 OT15 - NUMERICAL ANALYSIS AND OPTIMIZATION TECHNIQUES

(Information Technology - Common Course)
(2018 Admission onwards)

Time: Three Hour
Maximum: 80 Marks

PART A

Answer all questions. Each question carries 1 mark.

1. Name any two errors in computation.
2. What is a transcendental equation? Give an example.
3. What do you mean fixed point system?
4. Using Bisection method find first two iteration of $\mathrm{x}^{3}-3 \mathrm{x}-5=0$
5. Write Regula -Falsi Formula.
6. Define shift operator E.
7. Give an equation connecting ∇ and E
8. Write Lagrange's formula.
. Define Slack variable
9. What is an optimum solution of Linear programming problem?

PART B

Answer any eight questions. Each question carries 2 marks.
11. What do you mean by rate of convergence in Numerical method?
12. Prove that $\Delta=\mathrm{E} \nabla$
13. Explain Truncation error and Absolute error
14. Write the relation between divided differences forward differences.
15. Using Newton Raphson's method find the real root of the equation $\mathrm{x}^{\mathrm{x}}-2=0$
16. Construct the Newton's backward difference table based on the following data

X	$:$	60	70	80	90

$\mathrm{F}(\mathrm{x}) \quad: \quad 226 \quad 250 \quad 276 \quad 304$
17. Using Trapezoidal Rule evaluate $\int_{0}^{4} e^{x}$ dx considering 4 subintervals
18. Using Picard's method solve $\frac{d y}{d x}=y$, given $\mathrm{Y}(0)=1$
19. Compute $\frac{d y}{d x}$ at $\mathrm{X}=1$ from the following table given below
$\begin{array}{llllllll}\mathrm{X} & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
$\begin{array}{llllllll}\mathrm{Y} & : & 1 & 8 & 27 & 64 & 125 & 216\end{array}$
20. Explain Travelling sales man problem
21. Find the Dual of the following linear programming problem

Minimize $Z=2 x_{1}+x_{2}$
Subject to

$$
\begin{aligned}
& 3 x_{1}+x_{2} \geq 3 \\
& 4 x_{1}+3 x_{2} \geq 6 \\
& x_{1}+2 x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

22. Obtain an initial basic feasible solution to the following transportation problem

Origin		A	B	C	Supply
	1	2	7	4	5
	2	3	3	1	8
	3	5	4	7	7
	4	1	6	2	14
Demand	7	9	18	34	

($8 \times 2=16$ Marks)

PART C

Answer any six questions. Each question carries 4 marks.
23. Using relaxation method solve the system of equations

$$
\begin{aligned}
& 5 x-y-z=3 \\
& -x+10 y-2 z=7 \\
& -x-y+10 z=8
\end{aligned}
$$

24. Using Gauss seidal method solve the equations
$4 x+0 y+2 z=4$
$0 x+5 y+2 z=-3$
$5 x+4 y+10 z=2$
25. Using Newton's Divided difference formula evaluate $f(25)$

$$
\begin{array}{lcccc}
\mathrm{X}: & 20 & 30 & 40 & 50 \\
\mathrm{f}(\mathrm{x}): & 512 & 439 & 346 & 243
\end{array}
$$

26. Using Taylor's series method compute $\mathrm{y}(0.1)$ to three decimal places $\frac{d y}{d x}=1+\mathrm{xy}$ given $\mathrm{y}(0)=1$
27. Evaluate $\int_{0}^{0.6} e^{x} \mathrm{dx}$ correct to five significant digits with $\mathrm{n}=6$ by using
a) Simpson's $1 / 3$ Rule
b) Simpson's $3 / 8$ Rule
28. Compute $\mathrm{f}^{\mathrm{I}}(\mathrm{x})$ and $\mathrm{f}^{\text {II }}(\mathrm{x})$ at $\mathrm{x}=1.05$

X	$:$	1	1.05	1.1	1.15	1.20	1.25	1.3

Y	$:$	1	1.025	1.049	1.072	1.095	1.118	1.140

29. Solve the following linear programming problem

Maximize $Z=3 x_{1}+9 x_{2}$
Subject to $x_{1}+4 x_{2} \leq 8$
$\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 4$
and $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
30. Explain Dual simplex method
31. The assignment cost of assigning any one operator to any one machine is given in the following table. Determine optimum assignment cost

Operators
I II III IV
$\begin{array}{lllll}\text { A } & 10 & 5 & 13 & 15\end{array}$
Machine
$\begin{array}{lllll}\text { B } & 3 & 9 & 18 & 3\end{array}$
$\begin{array}{lllll}\text { C } & 10 & 7 & 3 & 2\end{array}$
$\begin{array}{lllll}\text { D } & 5 & 11 & 9 & 7\end{array}$

($6 \times 4=24$ Marks $)$

PART D

Answer any two questions. Each question carries 15 marks.

32. Using Croute's triangularization method solve the equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& 4 x_{1}+3 x_{2}-x_{3}=6 \\
& 3 x_{1}+5 x_{2}+3 x_{3}=4
\end{aligned}
$$

33. Given $\frac{d y}{d x}=1+y^{2}$ where $\mathrm{y}(0)=0$ use fourth order Runge kutta formula to find $\mathrm{y}(0.2)$, $y(0.4)$ and $y(0.6)$
34. Given $\frac{d y}{d x}=x^{2}+\mathrm{y}, \mathrm{y}(0)=1$ determine $\mathrm{y}(0.02), \mathrm{y}(0.04)$ and $\mathrm{y}(0.06)$ using Euler's formula.
35. Using Sterling's formula find $f(32)$

X	$:$	20	25	30	35	40	45
Y	$:$	14.035	13.674	13.257	12.734	12.089	11.309

