\qquad
\qquad

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC19U BCA1 C02 - DISCRETE MATHEMATICS

(Computer Application - Complementary Course)
(2019 Admission onwards)
Time : 2.00 Hours

Maximum : 60 Marks
Credit : 3

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Negate each quantified propositions
(a) Every computer is a 16 -bit machine.
(b) No person has green eyes.
2. Is the set $A=\{1,3,5,7,9\}$ a subset of $B=\{1,2,3,5,6,7\}$? Justify.
3. Draw the logic gate circuit for the Boolean expression $(A . B)+(A . C)$.
4. Define initial node of the edge in a graph with an example.
5. Define isomorphism.
6. Define closed walk.
7. Show that a complete graph of n vertices is $(n-1)$ - regular.
8. Prove or disprove
(a) Spanning tree of a connected graph G is a skeleton of G.
(b) Spanning tree of a connected graph G is a maximal tree of G.
9. Define weighted graph and minimal spanning tree.
10. Write the difference between cut-set and cut vertex.
11. Draw a graph for connected graphs and unconnected graphs with five vertices.
12. What is the difference between strong component and weak component?
(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)
 Answer all questions. Each question carries 5 marks.

13. Evaluate the boolean expression where $a=2, b=3, c=5$ and $d=7$
(a) $\sim\{(a \leq b) \wedge[\sim(c>d)]\}$
(b) $\sim[(a>b) \vee(b \leq d)]$
14. Determine whether
(a) $[(p \rightarrow q) \wedge(\sim q)] \rightarrow \sim p$ is a tautology.
(b) $\sim p \leftrightarrow(p \vee \sim p)$ is a contradiction.
15. Using truth tables, prove the De-Morgans laws in a boolean algebra.
16. Explain the concept of chromatic number on complete graph, wheel graph and n-star graph.
17. Explain bipartite and complete bipartite graph with suitable examples.
18. (a) Explain pendant vertex with an example.
(b) Explain distance, eccentricity and center in a graph.
19. Show that a complete graph of five vertices is non planar.

Part C (Essay questions)

Answer any one question. The question carries 10 marks.
20. (i) Show that the relation R in the set \mathbb{Z} of integers given by $R=\{\langle a, b\rangle: 2$ divides $a-b\}$ is an equivalence relation on \mathbb{Z}.
(ii) Give an example of a relation, which is reflexive and transitive, but not symmetric.
21. (i) Let $A=\{1,2,3\}, \$ \mathrm{X} \$$ denotes the power set of A. Then draw the Hasse diagram for the inclusion relation on X defined by $\subseteq=\left\{<A^{\prime}, A^{\prime \prime}>: A^{\prime} \subseteq A^{\prime \prime}, A^{\prime} \in X, A^{\prime \prime} \in X\right\}$.
(ii) Find the least member and greatest member, if any, in this poset.
(iii) Find the minimal members and maximal members, if any, in this poset.
($\mathbf{1 \times 1 0 = 1 0}$ Marks)

