\qquad
\qquad

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC20U MTS1 B01 - BASIC LOGIC AND NUMBER THEORY

(Mathematics - Core Course)
(2020 Admission onwards)
Time : 2.5 Hours
Maximum : 80 Marks
Credit : 4
Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Write the truth table of conjunction.
2. Let $p \rightarrow q$. If $\triangle \mathrm{ABC}$ is equilateral, then it is isosceles. Write the converse and inverse of the statement.
3. Rewrite the given propositions symbolically, where $\mathrm{UD}=$ set of real numbers.
a) For each integer x, there exists an integer y such that $x+y=0$.
b) There are integers x and y such that $x+y=5$.
4. Test the validity of the argument
$p \leftrightarrow q$
$\sim p \vee r$
$\sim r$
$\overline{\therefore \sim}$
5. Prove directly that the sum of any two even integers is even.
6. State weak version of induction.
7. Compute the first four terms of the sequence defined recursively : $a_{0}=1, a_{n}=a_{n-1}+n$
8. Prove or disprove if p is prime, then $p^{2}+1$ is prime.
9. Find the five consecutive composite numbers less than 100.
10. Write a linear combination of 12,15 , and 21.
11. State Dirichlet's Theorem.
12. Give an example for diophantine equation.
13. Using divisibility test determine whether 398008 and 576 are divisible by 8 .
14. Let p be a prime and a any integer such that p does not divide a. Then show that a^{p-2} is an inverse of a modulo p.
15. Define Euler's phi function and compute $\phi(21)$.
(Ceiling: 25 Marks)
Part B (Paragraph questions)
Answer all questions. Each question carries 5 marks.
16. Find the number of positive integers less than or equal to 2000 and divisible by 3,5 , or 7 .
17. Using the Euclidean Algorithm, find the gcd of 2076, 1076
18. Prove that if p be a prime and $p \mid a_{1} a_{2} \ldots a_{n}$, where $a_{1}, a_{2}, \ldots \ldots a_{n}$ are positive integers, then $p \mid a_{i}$ for some i, where $1 \leq i \leq n$.
19. Find the positive factors of 90 .
20. Let $a \equiv b(\bmod m)$ and $c \equiv d(\operatorname{modm})$. Then show that $a+c \equiv b+d(\operatorname{modm})$ and $a c \equiv b d(\operatorname{modm})$.
21. Find the units digits in the decimal value of $1776^{1777^{1778}}$.
22. Solve the congruence $28 a \equiv 119(\bmod 91)$.
23. Using inverses, find the incongruent solution of $4 x \equiv 11(\bmod 13)$
(Ceiling: $\mathbf{3 5}$ Marks)

Part C (Essay questions)

Answer any two questions. Each question carries 10 marks.
24. (a) Verify $p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r$.
(b) Using the laws of logic simplify the boolean expression $(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$.
25. (a) Prove that if a and b be positive integers, then $[a, b]=\frac{a b}{(a, b)}$.
(b) Compute $[252,360]$
26. (a) If n is a positive integer such that $(n-1)!\equiv-1(\bmod n)$, then show that n is a prime.
(b) Prove that a positive integer a is self-invertible modulo p if and only if $a \equiv \pm 1(\bmod p)$
27. (a) Using Euler's theorem find the remainder when 245^{1040} is divided by 18 .
(b) Solve the linear congruence $23 x \equiv 17(\bmod 12)$.

