\qquad
\qquad

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)
CC19U MTS1 C01 / CC20U MTS1 C01-MATHEMATICS - I
(Mathematics - Complementary Course)
(2020 Admission onwards)
Time : 2.00 Hours

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Find $\lim _{x \rightarrow 3} \frac{8 x^{2}}{1+\sqrt{x}}$
2. Find $\frac{d}{d x}\left(4 x^{9}-6 x^{5}+3 x\right)$
3. Find $\frac{d}{d x}\left(\frac{2 x+1}{x^{2}-2}\right)$
4. Let $f(x)=(x-2)^{3}$ and $g(x)=x^{3}$. Find $f \circ g$ and $g \circ f$.
5. If $x y+\sqrt{x^{2}-y}=7$, compute $\frac{d y}{d x}$ using implicit differentiation.
6. Find $\int\left(\frac{t^{3}-8 t+1}{t^{3 / 2}}\right) d t$
7. Suppose that f is continuous on $[0,3]$, that f has no roots on the intreval and that $f(0)=1$. Prove that $f(x)>0$ for all x in $[0,3]$.
8. Using algebra alone, show that $f(x)=x^{2}$ is increasing at $x_{0}=2$.
9. Use the second derivative test to analyze the critical points of the function $f(x)=6 x^{5}-x+20$
10. State Horserace Theorem.
11. Find the sum $1+2+\ldots+25$
12. An object moving in a straight line has velocity $v=2 t^{3}+t^{4}$ at time t. How far does the object travel between $t=0$ and $t=2$?

Part B (Short essay questions - Paragraph)
Answer all questions. Each question carries 5 marks.
13. Use the formal definition find the derivative of $f(x)=\frac{10}{x}$ for $x \neq 0$.
14. Find the equation of the line tangent to the graph of $y=\sqrt{x}+\frac{1}{2(x+1)}$ at $x=1$.
15. Identify the parametric curve $x=a t+b, \quad y=c t+d$ where a, b, c, d are all constants. What is its slope?
16. Find the critical points, endpoints, maximum and minimum points and values of the function $f(x)=x^{3}+3 x^{2}-3 x+1$ on the intreval $[-1,2]$.
17. Find $\lim _{x \rightarrow 0}\left(\frac{1}{x \sin x}-\frac{1}{x^{2}}\right)$
18. Compute the exact value of $\int_{0}^{1}\left(x^{3}\right) d x$ by using Reimann sums and the formula
$1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots+N^{3}=\left(\frac{(N(N+1))}{2}\right)^{2}$.
19. Find the area of the region between the graphs of x and $x^{2}+1$ on $[-2,2]$.
(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.
20. (a) An oil slick has area $y=30 x^{2}+100 x$ square meters x minutes after a tanker explosion. Find the average rate of change in area with respect to time during the period from $x=2$ to $x=3$ and from $x=2$ to $x=2.1$. What is the instantaneous rate of change of area with respect to time at $x=2$?
(b) Compute the second derivative $\frac{d^{2}}{d x^{2}}\left(\frac{x^{2}}{x-1}\right)$.
21. The region under the graph of $\cos x+1$ on $[0,2 \pi]$ is revolved about the x axis. Using disk method find its volume.

