\qquad
\qquad

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2023

(CBCSS - UG)
(Regular/Supplementary/Improvement)

CC19U MTS3 B03 / CC20U MTS3 B03-CALCULUS OF SINGLE VARIABLE - II
 (Mathematics - Core Course)
 (2019 Admission onwards)

Time : 2.5 Hours

Part A (Short answer questions)
Answer all questions. Each question carries 2 marks.

1. Expand the expression $\ln \left(\frac{x+1}{x-1}\right)^{1 / 4}$.
2. What is a one-to-one function? Give an example.
3. Define the logarithmic function $f(x)=\log _{a}(x)$, where $a>0$ and $a \neq 1$. What are its domain and range?
4. Evaluate $\int_{2}^{4} \frac{1}{\sqrt{4-x}} d x$ and interpret your result geometrically.
5. Show that $\sum_{n=1}^{\infty}(-1)^{n-1}$ is divergent.
6. Use integral test to determine whether $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges or diverges.
7. State comparison test.
8. State alternating series test.
9. Describe the curves represented by the parametric equations $x=a \cos \theta$ and $y=a \sin \theta, a>0$ with parameter interval $[0, \pi]$.
10. Find the points on the curve $x=t^{2}-4, y=t^{3}-3 t$ at which the tangent line is either horizontal or vertical.
11. Sketch the region comprising points whose polar coordinates satisfy the condition $1 \leq r<2$.
12. Sketch the cylinder $y^{2}+z^{2}=9$.
13. The point $(\sqrt{3},-1,4)$ is expressed in rectangular coordinates. Find its cylindrical coordinates.
14. Find $\bar{\gamma}^{\prime}(t)$ and $\bar{\gamma}^{\prime \prime}(t)$ of $\bar{\gamma}=t \bar{i}+t^{2} \bar{j}+t^{3} \bar{k}$
15. Define smooth curve.

Part B (Paragraph questions)

Answer all questions. Each question carries 5 marks.
16. Use logarithmic differentiation, find the derivative of the function $y=\sin x^{\tan x}$.
17. Show that $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$.
18. Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
19. Determine whether the sequence $a_{n}=3-\frac{1}{n}$ is monotonic. Is the sequence bounded?
20. Find the radius of convergence and the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n} x^{n}}{\sqrt{n+1}}$.
21. Find the area of the region that lies outside the circle $r=3$ and inside the cardioid $r=2+2 \cos \theta$.
22. Find an equation of the plane that passes through the point $(-1,2,3)$ and contains the line $x=-1+2 t$, $y=-2+3 t, z=3-t$.
23. Sketch the curve defined by the vector function $\bar{\gamma}(t)=\langle 3 \cos t,-2 \sin t\rangle, 0 \leq t \leq 2 \pi$
(Ceiling: $\mathbf{3 5}$ Marks)

Part C (Essay questions)

Answer any two questions. Each question carries 10 marks.
24. Find the area of the region under the graph of $y=\frac{1}{4+x^{2}}$ on the interval $[0,1]$.
25. a) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{n^{2}}$ conditionally convergent.
b) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n \sqrt{n}}$ absolutely convergent.
26. Find $\int \cos x^{2} d x$.
27. A shell is fired from a gun located on a hill 100 m above a level terrain. The muzzle speed of the gun is $500 \mathrm{~m} / \mathrm{sec}$, and it's angle of elevation is 30°.
a) Find the range of the shell.
b) What is the maximum height attained by shell?
c) What is the speed of the shell at impact?

